👤

Obtenez des conseils avisés et des réponses précises sur FRstudy.me. Notre communauté est prête à fournir des réponses détaillées et fiables, que vos questions soient simples ou complexes.

soit la fonction f définie sur ]0;+infinie[ par f(x)=x²+1-2lnx

on note C la courbe représentative de f dans un repère orthonormal (O;I;J) d'unité graphique 1cm.

 

1°a) calculer lim f(x) quand x tend vers 0

b) interpréter géométriquement le résultat obtenu au a).

 

2°) vérifier que, pour x de ]0;+infinie[

f(x)=x²(1+1/x²-2lnx/x²)

en déduire lim f(x) quand x tend vers + infinie

 

et ensuite....

 

les deux questions sont indépendantes e=exponentielle

 

1°) soit f la fonction définie sur ]0;+infini[ par

f(t)=10-20e-0,2t

 

a) calculer lim f(t) quand t tend vers + infini

 

b) en déduire que la courbe représentative de f dans un repère (O;I;J) admet une asymptote dont on donnera une équation.

 

2°) soit g la fonction définie sur ]0;+infini[ par

g(x)=150/1+e1-x

 

a) calculer lim g(x) quand x tend vers +infini

 

b) interpréter graphiquement le résultat obtenu au a)



Sagot :

Bonjour ! 

 

1) a) Quand x tend vers 0, ln(x) tend vers - l'infini. Il te suffit te remplacer ensuite x par 0, et tu auras ton premier résultat. 

 

b) Tu obtiens normalement + l'infini. D'après ce site : http://labomath.free.fr/faidherbe/premS/limite/limites.pdf

Quand tu obtiens lim f(x) = + l'infini, la courbe représentative de f admet la droite d'équation x = 0 comme asymptote verticale. A vérifier dans ton cours car je n'en suis plus sûre ! :) Mais en tout cas, la réponse à cette question doit contenir une notion d'asymptote.

 

2) Tu dois prouver que x²+1-2ln(x) = x²(1+1/x²-2ln(x)/x) 

Tu as juste à mettre x² en facteur, essaie de le faire et si tu as un problème, demande moi 

 

Vois ça, et après je vais essayer de t'aider pour la suite. 

Marie

Nous sommes ravis de vous compter parmi nos membres. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons créer une ressource de connaissances précieuse. Chaque question trouve une réponse sur FRstudy.me. Merci et à très bientôt pour d'autres solutions.