👤

Trouvez des réponses à vos questions les plus pressantes sur FRstudy.me. Découvrez des solutions fiables à vos questions rapidement et précisément avec l'aide de notre communauté d'experts dévoués.

Soit f la fonction définie sur]0 ; + ∞ [par : f(x)=Ln (2x)-e^-2x Et soit C la courbe représentative de f dans un repère orthonormé (O, i ; j) PARTIE A 1/ Calculer les limites de f en 0 et en +∞. En déduire que C admet une asymptote dont on donnera une équation. A/ LIMITE DE F(X) EN +∞ F(x)=ln (2x)-e^-2x Lim ln (2x)-e^-2x X→+∞ On sait que Lim ln t=+∞ T→+∞ Donc Lim ln 2x =+∞ X→+ ∞ On sait que Lim e^t= +∞ X→+∞ Donc Lim (e^-2x)= +∞ X→+∞ Donc Lim ln (2x)-e^-2x= +∞ X→+∞ B/ LIMITE DE F(X) EN 0 Lim ln (2x)-e^-2x x→0 On sait que Lim lnx= -∞ x→0 Donc Lim ln (2x)= -∞ x→0 Lim -2x=0 X→0 Lim e^0=1 X→0 Donc Lim ln (2x)-e^-2x= -∞ x→0 C/ ASYMPTOTE La droite d’équation x=0 (axe des ordonnées) est une asymptote verticale. 2/ Calculer la dérivée de f ; en déduire le sens de variation de f. Dresser le tableau de variation complet de f. A/ DERIVEE : F(x)=ln(2x)-e^-2x est de le forme : Ln(u)’=(u’) /u (e^u)’=u’e(u) Avec u=2x et u’=2 U=-2x et u’=-2 Donc : f’(x)= (ln (2x))’-(e^-2x)’ f’(x)= [ ln(u)’]- [ (e^u)’] f’(x)=[(u’) /u]-[u’*(e^u)] = [(2x’) /u]-[(-2x)’*(e^u)] = [2/2x]-[(-2)*(e^-2x)] = (2 /2x)-(-2*e^-2x) = (1/x)-(-2*e^-2x) B/ SENS DE VARIATION : f’(x)>0 (1/x)-(-2*e^-2x)>0 X0 Il existe une valeur comprise entre ½ et 1. B/ ENCADREMENT DE A D’AMPLITUDE 10^-1 Avec la calculatrice l’encadrement est de 0,55 4/ Etudier le signe de f(x) lorsque x est un réel de]0 ;+∞[ Signe de f(x)0 sur ]0,55 ;+∞[ 5/ Soit T la représentation graphique de la fonction g définie sur ]0 ;+∞[ par g(x)=ln(2x) A/ ETUDIER LIM (f(x)-g(x)) . Interpréter géométriquement le résultat obtenu : x→+∞ Calculons f(x)-g(x) F(x)-g(x)=[ln2x-e^-2x]-[ln2x] = ln 2x-e^-2x-ln 2x = ln 2x-ln 2x –e^-2x = - e^-2x Lim –e^-2 x→+∞ lim -2x=-∞ x→+∞ lim –e^-2x=0 X→-∞ Lim f(x)-g(x)=0 X→+∞ L’axe des abscisses du repère (d’équation y=0) est une asymptote horizontale. B / ETUDIEZ LA POSITION RELATIVE DES COURBES C ET T La position relative des courbes C et T est superposée. c. Tracez C et Γ dans le repère (O, i ; j ) . Partie B 1. n étant un entier naturel non nul, soit Δn la partie du plan délimitée par les courbes C et Γ et les droites d’équation x = n et x = n+1. Calculer, en unité d’aire, l’aire αn de Δn. 2. Montrer que la suite (αn) est une suite géométrique. Préciser son premier terme 1 α et la valeur de sa raison q. 3. n étant un entier naturel non nul, soit En la partie du plan délimitée par les courbes C et Γ et les droites d’équations x = 1 et x = n : a. calculez en unité d’aire, l’aire An de En ; b. calculez n n Lim A →+∞ ; c. interprétez géométriquement ce résultat. Je voudrais avoir de l'aide pour cet exercice , pour la partie B et corriger éventuellement la partie A merci



Sagot :

LIMITE DE F(X) EN +∞ F(x)=ln (2x)-e^-2x

Lim ln (2x)-e^-2x X→+∞ On sait que Lim ln t=+∞ T→+∞ Donc Lim ln 2x =+∞ X→+ ∞

On sait que Lim e^t= 0 X→-∞ Donc Lim (e^-2x)= +0 X→+∞

(ce que tu as ecris est faux)

Donc Lim ln (2x)-e^-2x= +∞ X→+∞

 LIMITE DE F(X) EN 0 Lim ln (2x)-e^-2x x→0

On sait que Lim lnx= -∞ x→0 Donc Lim ln (2x)= -∞ x→0 Lim -2x=0 X→0 et e^0=1

Donc Lim ln (2x)-e^-2x= -∞ x→0 Ok mais en 0 ce n'est pas vraiment une limite...

C OK.

Dérivée : 1/x+2e^(-2x) OK (enlèves les 2 - et la ())

les deux courbes se confondent à l'infini car e^(-2x)>0 tend vers 0 : la courbe C est au dessous de la courbe T

 

an est égal à (1-e²)/(2exp(2n))

Votre engagement est important pour nous. Continuez à partager vos connaissances et vos expériences. Créons un environnement d'apprentissage agréable et bénéfique pour tous. Faites de FRstudy.me votre ressource principale pour des réponses fiables. Nous vous attendons pour plus de solutions.