👤

Connectez-vous avec des experts et des passionnés sur FRstudy.me. Posez vos questions et recevez des réponses précises et bien informées de la part de notre réseau de professionnels.

Bonsoir,
Je viens vers vous car je suis complètement coincé sur mon devoir maison de mathématiques, dont voici l'énoncé :

Une page rectangulaire de 20cm sur 30cm contient une zone imprimée (en bleu sur la figure) entourée d'en marges de même largeur.
On cherche quelles valeurs donner à la largeur x de la marge pour que l'aire de la zone imprimée soit supérieure à 459 cm².

Et voici les questions :

1) dans quel intervalle x varie-t-il ?
Il me semble que c'est I = [0;10] ?
→ Résultat trouvé grâce à la résolution des deux inéquations 20-x² ≥ 0 (pour la longueur de la page) et 30-x² ≥ 0 (pour la largeur de la page)

2) démontrer que le problème revient à résoudre l'inéquation 4x² - 100x + 141 > 0
ça je l'ai fait donc pas besoin d'aide

3) un logiciel de calcul formel donne: 4x² - 100x + 141 = (2x - 3)(2x - 47)
3A) vérifier le résultat fourni par le logiciel.
C'est bon aussi pour cette question

3B) Utiliser ce résultat pour résoudre dans l'ensemble des nombres réels 4x² - 100x + 141 ≥ 0
3C) En déduire la réponse au problème posé.

Et je suis complètement bloqué aux deux dernières questions !

Votre aide me sera bien précieuse :D

Merci d'avance


Bonsoir Je Viens Vers Vous Car Je Suis Complètement Coincé Sur Mon Devoir Maison De Mathématiques Dont Voici Lénoncé Une Page Rectangulaire De 20cm Sur 30cm Con class=

Sagot :

Réponse :

Explications étape par étape

On résout (2x-3)(2x+47)  =0

un produit de facteurs est nul si au moins l'un de ses facteurs est nul

solutions soit 2x-3=0   (x=3/2)     ou    2x+47=0    x=-47/2

tableau de signes sur [0 ; 10]

x      0                       1,5                      10

2x-3..........-.....................0............+.............

2x-47........-...................................-..................

A(x)..............+...................0...........-.....................

L'aire est donc >ou =459 cm² pour x< ou =1,5cm.

ou x appartient à [0;1,5]

 

Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Chaque contribution que vous faites est appréciée. Nous espérons que vous avez trouvé ce que vous cherchiez sur FRstudy.me. Revenez pour plus de solutions!