👤

Recevez des conseils d'experts et un soutien communautaire sur FRstudy.me. Obtenez des conseils étape par étape pour toutes vos questions techniques de la part de membres de notre communauté dévoués.

Bonjour pouvez vous m'aider sur cette exercice d'intégration ? Merci ​

Bonjour Pouvez Vous Maider Sur Cette Exercice Dintégration Merci class=

Sagot :

Réponse :

f(x) =(ax+b)lnx   sur ]1;+oo[ ; dérivée f'(x)=a*lnx+(1/x)*(ax+b)

Explications étape par étape

1) On deux inconnues il nous faut donc deux équations

on sait :

*que f(2)=0 soit (a*2+b)ln2=0 comme ln 2 n'est pas =0 il faut que 2a+b=0   équation (1)

* que f'(1)=1 (coefficient directeur de la tangente)

donc a*ln1+ (1/1)(a+b)=1 or ln1 =0 il reste  a+b=1     équation(2)

les solutions de ce système sont a=-1 et b=2 (programme de 3ème)

d'où f(x)=(-x+2)lnx

2) on note que f(x) est <0 sur ]0;1[ >0 sur ]1;2[  et <0 sur ]2;+oo[

g(x) doit donc être décroissante puis croissante puis décroissante  c'est donc la courbe 2 (verte) et qui mal représentée sur [1 ;2]  (tracé brouillon)

3-a) F(x) est une primitive de f(x) si la dérivée F'(x)=f(x)

Si on dérive F(x)  F'(x)=(2-x)lnx+(1/x)(2x-x²/2)-2+x/2=(2-x)lnx+0

F(x) est donc une primitive de f(x).

3-b) Calculons F(1)=0-2+1/4+15/4=2

Vu le tracé F(x) est bien celle du graphique.Par lecture F(1)=2 (courbe verte).

3c) Intégrale de 1à 2 de f(x)dx=F(2)-(F1)=il suffit de remplacer et de calculer (rien de compliqué)

Ceci représente l'aire  comprise entre la courbe et l'axe des abscisses sur [1;2] en u.a.

Merci de votre participation active. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Chaque question trouve une réponse sur FRstudy.me. Merci et à très bientôt pour d'autres solutions.