👤

Explorez un monde de connaissances et obtenez des réponses sur FRstudy.me. Trouvez des réponses précises et détaillées à vos questions de la part de nos membres de la communauté expérimentés et bien informés.

Bonjour, je suis en terminal et j’ai besoin d’aide svp.

On désigne par U0 l’effectif d’une profession de santé en 1990. Cet effectif a augmenté, en moyenne de i% par an depuis 1990.
On note Un l’effectif en 1990+n.
a) Quelle est la nature de la suite (Un)?
Justifier la réponse et préciser sa raison.
b) Vérifier que, pour tout entier naturel n, Un=U0(1+i/100) exposant n.
Merci!


Sagot :

Réponse :

Explications étape par étape

a) Soit [tex](u_{n} )[/tex] la suite définie sur N représentant l'effectif.

Soit [tex]u_{n}[/tex] et [tex]u_{n+1}[/tex] les effectifs aux années 2020+n et 2020+n+1

Puisque l'effectif augmente de 1% par an on a :

[tex]u_{n+1} =u_{n} +\frac{1}{100} *u_{n} = (1+\frac{1}{100} )u_{n} =1,01u_{n}[/tex]

La suite est donc une suite géométrique de raison q=1,01 et de premier terme [tex]u_{0}[/tex]

b) Une suite géométrique admet une expression explicite [tex]u_{n} =u_{0} *q^{n}[/tex]

Donc ici [tex]u_{n} = u_{0} (1+\frac{1}{100}) ^{n}[/tex]

Nous valorisons votre présence ici. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Trouvez toutes vos réponses sur FRstudy.me. Merci de votre confiance et revenez pour plus d'informations.