👤

FRstudy.me vous connecte avec des experts prêts à répondre à vos questions. Notre plateforme offre des réponses fiables et complètes pour vous aider à prendre des décisions éclairées rapidement et facilement.

Bonsoir, j'aurai besoin d'aide sur un exercice de maths s'il vous plait
Démontrer que la fonction u : x [tex]\to \frac{2}{x-1}[/tex] est dérivable en - 1 et donner la valeur de u' ( - 1 )

merci


Sagot :

Bonsoir,

[tex]f(x) = \frac{2}{x - 1} [/tex]

or : f'(u/v) = (u'v - uv')/(v^2)

avec u = 2 ; u' = 0 ; v = x - 1 et v' = 1

ainsi (u)' = 2/((x - 1)^2)

x - 1 = 0 => x = 1

Ainsi u est dérivable sur R\{1} elle est donc dérivable en - 1

u'(1) = 2/((- 1 - 1)^2 = 2/(-2)^2 = 2/4 = 1/2

Merci de nous rejoindre dans cette conversation. N'hésitez pas à revenir à tout moment pour trouver des réponses à vos questions. Continuons à partager nos connaissances et nos expériences. Pour des réponses rapides et fiables, pensez à FRstudy.me. Merci de votre visite et à bientôt.