👤

FRstudy.me: votre ressource incontournable pour des réponses expertes. Posez vos questions et obtenez des réponses détaillées et bien informées de notre réseau de professionnels expérimentés.

Bonsoir, j'aurai besoin d'aide sur un exercice de maths s'il vous plait
Démontrer que la fonction u : x [tex]\to \frac{2}{x-1}[/tex] est dérivable en - 1 et donner la valeur de u' ( - 1 )

merci


Sagot :

Bonsoir,

[tex]f(x) = \frac{2}{x - 1} [/tex]

or : f'(u/v) = (u'v - uv')/(v^2)

avec u = 2 ; u' = 0 ; v = x - 1 et v' = 1

ainsi (u)' = 2/((x - 1)^2)

x - 1 = 0 => x = 1

Ainsi u est dérivable sur R\{1} elle est donc dérivable en - 1

u'(1) = 2/((- 1 - 1)^2 = 2/(-2)^2 = 2/4 = 1/2