👤

FRstudy.me: où vos questions rencontrent des réponses expertes. Posez vos questions et recevez des réponses précises et bien informées de la part de notre réseau de professionnels.

Bonsoir, je ne comprend vraiment pas cet exercice, si vous avez la solution n'hésitez pas a m'en faire part merci !

Bonsoir Je Ne Comprend Vraiment Pas Cet Exercice Si Vous Avez La Solution Nhésitez Pas A Men Faire Part Merci class=

Sagot :

Réponse :

fonction affine : fonction du type ax + b

Pour ces fonctions, le taux d'accroissement est constant. En effet, si x1 et x2 sont deux réels,

l'accroissement f(x2) – f(x1) est proportionnel à x2 – x1

ça semble compliqué dit comme ça, mais on va utiliser ça pour répondre.

Ici, pour passer de x = 6 à x = 10, je passe de f(x) = 2 à f(x) = 1

j'avance de 4 (en x), je perd 1 (en y)

donc si j'avance de 2 (en x) je devrais seulement perdre 0,5 (en y)

(j'avance deux fois moins, donc je perds deux fois moins et c'est là qu'intervient la proportionnalité d'avant)

Est-ce que c'est le cas ? Et bien oui car

pour passer de x = 10 à x = 12, je passe de f(x) = 1 à f(x) = 0,5

j'avance de 2 (en x), je perd 0,5 (en y)

Version "experte"

On a [tex]\frac{f(10)-f(6)}{10 - 6} = \frac{1-2}{10 - 6} = \frac{-1}{4}[/tex] et [tex]\frac{f(12)-f(10)}{12 - 10} = \frac{1-0.5}{12 - 10} = \frac{-0,5}{2} = \frac{-1}{4}[/tex]

donc [tex]\frac{f(10)-f(6)}{10 - 6} =\frac{f(12)-f(10)}{12 - 10} \\[/tex] et la fonction peut être affine

Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous créons une ressource de savoir précieuse. Chaque réponse que vous cherchez se trouve sur FRstudy.me. Merci de votre visite et à très bientôt.