Rejoignez la communauté FRstudy.me et obtenez les réponses dont vous avez besoin. Notre communauté est là pour fournir les réponses complètes et précises dont vous avez besoin pour prendre des décisions éclairées.
Sagot :
ABCD est un losange de centre O tel que :
AO = 7/15 (cm)
OB = 8/5 (cm)
a) Démontrer que le triangle AOB est rectangle en O
Si ABCD est un losange, alors ses 2 diagonales sont ┴. Donc : AC ┴ BD → AO ┴ OB
→ le triangle AOB est rectagle en O.
b) Calculer AB
Dans le triangle rectangle AOB, le théorème de Pythagore vous permet d'écrire :
AB² = AO² + OB²
AB² = (7/15)² + (8/5)²
AB² = (7²/15²) + (8²/5²)
AB² = (49/225) + (64/25) → vous réduisez au même dénominateur, ici, c'est : 225
AB² = (49/225) + [(64 * 9)/(25 * 9)]
AB² = (49/225) + (576/225)
AB² = (49 + 576)/225
AB² = 625/225 → vous simplifiez par 25 en haut et en bas
AB² = 25/9
AB² = 5²/3²
AB² = (5/3)²
AB = 5/3
c) Calculer le périmètre du triangle AOB
p = AO + OB + AB
p = (7/15) + (8/5) + (5/3) → vous réduisez au même dénominateur, ici, c'est : 15
p = (7/15) + (24/15) + (25/15)
p = (7 + 24 + 25)/15
p = 56/15
p ≈ 3,733 cm
p = 3,8 cm (valeur arrondie au dixième près, c’est-à-dire à 1 chiffre après la virgule)
d) Calculer l'aire du triangle AOB
a = (AO * OB)/2
a = [(7/15) * (8/5)]/2
a = [(7 * 8)/(15 * 5)]/2
a = [56/75]/2
a = 56/(75 * 2)
a = (28 * 2)/(75 * 2) → vous simplifiez par 2
a = 28/75 → ce sont des cm²
e) Calculer l'aire du losange ABCD
L'aire du losange, c'est 4 fois l'aire du triangle
A = 4 * a
A = 4 * (28/75)
A = (4 * 28)/75
A = 112/75 → ce sont des cm²
e) La perpendiculaire à (AB) passant par O coupe (AB) en H. Calculer OH
Vous voyez si vous avez fait un dessin, que :
OH = BC/2 → et vous savez que : BC = AB
OH = AB/2
OH = (5/3)/2
OH = 5/(3 * 2)
OH = 5/6 cm
AO = 7/15 (cm)
OB = 8/5 (cm)
a) Démontrer que le triangle AOB est rectangle en O
Si ABCD est un losange, alors ses 2 diagonales sont ┴. Donc : AC ┴ BD → AO ┴ OB
→ le triangle AOB est rectagle en O.
b) Calculer AB
Dans le triangle rectangle AOB, le théorème de Pythagore vous permet d'écrire :
AB² = AO² + OB²
AB² = (7/15)² + (8/5)²
AB² = (7²/15²) + (8²/5²)
AB² = (49/225) + (64/25) → vous réduisez au même dénominateur, ici, c'est : 225
AB² = (49/225) + [(64 * 9)/(25 * 9)]
AB² = (49/225) + (576/225)
AB² = (49 + 576)/225
AB² = 625/225 → vous simplifiez par 25 en haut et en bas
AB² = 25/9
AB² = 5²/3²
AB² = (5/3)²
AB = 5/3
c) Calculer le périmètre du triangle AOB
p = AO + OB + AB
p = (7/15) + (8/5) + (5/3) → vous réduisez au même dénominateur, ici, c'est : 15
p = (7/15) + (24/15) + (25/15)
p = (7 + 24 + 25)/15
p = 56/15
p ≈ 3,733 cm
p = 3,8 cm (valeur arrondie au dixième près, c’est-à-dire à 1 chiffre après la virgule)
d) Calculer l'aire du triangle AOB
a = (AO * OB)/2
a = [(7/15) * (8/5)]/2
a = [(7 * 8)/(15 * 5)]/2
a = [56/75]/2
a = 56/(75 * 2)
a = (28 * 2)/(75 * 2) → vous simplifiez par 2
a = 28/75 → ce sont des cm²
e) Calculer l'aire du losange ABCD
L'aire du losange, c'est 4 fois l'aire du triangle
A = 4 * a
A = 4 * (28/75)
A = (4 * 28)/75
A = 112/75 → ce sont des cm²
e) La perpendiculaire à (AB) passant par O coupe (AB) en H. Calculer OH
Vous voyez si vous avez fait un dessin, que :
OH = BC/2 → et vous savez que : BC = AB
OH = AB/2
OH = (5/3)/2
OH = 5/(3 * 2)
OH = 5/6 cm
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. FRstudy.me est toujours là pour vous aider. Revenez souvent pour plus de réponses à toutes vos questions.