Connectez-vous avec une communauté de passionnés sur FRstudy.me. Trouvez des réponses détaillées et fiables de la part de notre réseau de professionnels expérimentés.
Sagot :
1) Le triangle ADE est rectangle en A
Théorème de Pythagore :
DE²= AD²+AE²
DE²= 2,4²+1²
DE²= 5,76+1
DE²= 6,76
DE = √6,76
DE = 2,6 cm
2) Le triangle ECB est rectangle en B
Théorème de Pythagore :
EC²=CB²+EB²
4²=2,4²+EB²
16 = 5,76+EB²
EB²=16-5,76
EB²=10,24
EB=√10,24
EB = 3,2 cm
AB = AE + EB
AB = 1 + 3,2
AB = 4,2 cm
3) Réciproque du théorème de Pythagore :
DC² = 4,2² = 17,64
DE²+EC² = 2,6²+4² = 6,76+16 = 22,76
DC²≠DE²+EC²
D'après le théorème de Pythagore , le triangle DEC n'est pas rectangle en E
Théorème de Pythagore :
DE²= AD²+AE²
DE²= 2,4²+1²
DE²= 5,76+1
DE²= 6,76
DE = √6,76
DE = 2,6 cm
2) Le triangle ECB est rectangle en B
Théorème de Pythagore :
EC²=CB²+EB²
4²=2,4²+EB²
16 = 5,76+EB²
EB²=16-5,76
EB²=10,24
EB=√10,24
EB = 3,2 cm
AB = AE + EB
AB = 1 + 3,2
AB = 4,2 cm
3) Réciproque du théorème de Pythagore :
DC² = 4,2² = 17,64
DE²+EC² = 2,6²+4² = 6,76+16 = 22,76
DC²≠DE²+EC²
D'après le théorème de Pythagore , le triangle DEC n'est pas rectangle en E
1) Dans le triangle DAE rectangle en E, on a l'égalité de Pythagore:
DE²= DA²+AE²
DE²= 2,4²+1²
DE²= 5,76+1
DE²= 6,76
DE= √6,76
DE= 2,6 cm
2) Dans le triangle CBE rectangle en B, on a l'égalité de Pythagore:
EC²= EB²+CB²
4²= EB²+ 2,4²
16= EB²+5,76
EB²= 16 - 5,76
EB²= 10,24
EB= √10,24
EB= 3,2 cm
AB= EB+ AE
AB= 3,2+1
AB= 4,2 cm
3) Le plus grand côté est le côté [DC]
D'une part: DC²= 4,2²= 17,64 cm
D'autre part: EC²+ED²
= 4²+2,6²
= 16+6,76
= 22,76 cm
On constate que DC²≠EC²+ED² donc le triangle DEC n'est pas rectangle.
(L'exercice est bon car je l'ai corrigé en cours)
DE²= DA²+AE²
DE²= 2,4²+1²
DE²= 5,76+1
DE²= 6,76
DE= √6,76
DE= 2,6 cm
2) Dans le triangle CBE rectangle en B, on a l'égalité de Pythagore:
EC²= EB²+CB²
4²= EB²+ 2,4²
16= EB²+5,76
EB²= 16 - 5,76
EB²= 10,24
EB= √10,24
EB= 3,2 cm
AB= EB+ AE
AB= 3,2+1
AB= 4,2 cm
3) Le plus grand côté est le côté [DC]
D'une part: DC²= 4,2²= 17,64 cm
D'autre part: EC²+ED²
= 4²+2,6²
= 16+6,76
= 22,76 cm
On constate que DC²≠EC²+ED² donc le triangle DEC n'est pas rectangle.
(L'exercice est bon car je l'ai corrigé en cours)
Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Chaque contribution que vous faites est appréciée. Chez FRstudy.me, nous nous engageons à fournir les meilleures réponses. Merci et à bientôt pour d'autres solutions.