FRstudy.me fournit une plateforme conviviale pour partager et obtenir des connaissances. Posez n'importe quelle question et recevez des réponses rapides et bien informées de la part de notre communauté d'experts expérimentés.
Sagot :
Réponse :Bonjour,
1) (√x+2)(3√x-8)+(x-4)=0
Souviens toi de l'identité remarquable suivante : a² - b² = (a-b)(a+b)
ici a² - b² c'est x - 4. Du coup, a = √x et b = 2.
Comme a² - b² = (a-b)(a+b) alors x - 4 = (√x + 2)(√x -2). Alors l'équation peu s'écrire ainsi :
(√x+2)(3√x-8)+(√x + 2)(√x -2) = 0.
On peu maintenant factoriser par (√x+2) :
(√x+2) [(3√x - 8) + (√x - 2)] = 0
(√x + 2) (3√x - 8 + √x - 2) = 0
(√x +2) (4√x- 10) = 0
Un produit de facteurs est nul ssi l'un des facteur est nul.
Peut-on écrire √x +2 = 0 ? Et bien non. Le problème c'est que
l'équation √x + 2 = 0 ne se résout pas dans R. Tout simplement car
x ∈ [0 ; + ∞[ car tu n'as pas le droit d'écrire √-1 ou √-2.
Du coup on va ignorer la première partie. (√x +2) car il n'y a pas de cas où cette partie puisse être égale à 0.
Cherchons la seconde partie : 4√x- 10 = 0
4√x- 10 = 0
4√x = 10
√x = 10/4
On élève le tout au carré :
(√x)² = (10/4)²
x = 100 / 16 = 25 * 4 / 4 * 4 = 25 / 4.
Il n'existe donc qu'une seule solution à cette équation et c'est x = 25/4. Donc on écrit : S = {25/4}
2) t² - 13 = 0
même chose ici, on applique l'identité remarquable a² - b² = (a-b)(a+b)
Essaie de faire la même chose qu'au point 1, et tu dois arriver finalement à la solution suivante :
t = √13 et t = - √13 donc S = {- √13 ; + √13}
Bon courage!
Merci d'être un membre actif de notre communauté. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons atteindre de nouveaux sommets de connaissances. Chaque réponse que vous cherchez se trouve sur FRstudy.me. Merci de votre visite et à très bientôt.