👤

Trouvez des réponses fiables à vos questions avec l'aide d'FRstudy.me. Posez n'importe quelle question et obtenez une réponse complète et précise de notre communauté de professionnels expérimentés.

Bonjour j’ai un sujet de bac de maths (termS) à faire. Pouvez vous m’aider ?

Bonjour Jai Un Sujet De Bac De Maths TermS À Faire Pouvez Vous Maider class=

Sagot :

Réponse :

Explications étape par étape :

■ enfin du véritable boulot proposé par un élève sérieux ! ☺ ( pas un rigolo de seconde ! )

■ f(x) = x² exp(-2x) donne la dérivée

f ' (x) = 2x exp(-2x) - 2x² exp(-2x) = 2x(1-x) exp(-2x)

dérivée positive pour 0 < x < 1

donc la fonction f est croissante pour 0 < x < 1 .

■ tableau de variation et de valeurs :

x --> -∞ -2 0 0,5 1 4 +∞

varia -> décroiss. |croissante | décroissante

f(x) --> +∞ 218 0 0,092 0,135 0,005 0+

■ 2°) I1 = 0,25 - (1,25/e²) = 0,08083 environ !

■ partie B 1a) :

In correspond à l' Aire comprise entre la courbe

et l' axe des abscisses pour 0 < x < 1

■ 1b) la Suite (In) doit être décroissante puisque f2(x) = f1(x) / (exp(2x))

( comme 0 ≤ x < 1 --> on a 1 ≤ exp(2x) < 7,389 )

■ 2a) fn+1(x) = x² exp(-2(n+1)x) = x² exp(-2nx) exp(-2x) = exp(-2x) * fn(x)

■ 2b) comme 0 ≤ x < 1 --> on a 1 ≤ exp(2x) < 7,389

donc on a bien fn+1(x) ≤ fn(x)

■ 2c) la Suite (In) est donc bien décroissante !

■ 3a) comme 0 ≤ x ≤ 1 --> on a 0 ≤ x² ≤ 1

et exp(-2x) est toujours positif ( ou nul )

donc on a bien 0 ≤ fn(x) ≤ exp(-2x)