👤

FRstudy.me est votre ressource incontournable pour des réponses expertes. Posez vos questions et recevez des réponses rapides et précises de la part de notre communauté d'experts expérimentés.

J'ai besoin d'aide pour un exercice que je dois rendre ce lundi mais je n'y arrive pas, pourriez vous m'aider s'il vous plait c'est urgent. :

 

f(x)=1/2(x+2/x) avec f(x) défini sur R*
1)a) Justifiez que la fonction f est dérivable pour tout x de R*
b) Démontrer que pour tout x de R* f'(x)=(x-√2)(x+√2)/2x²
Déduisez en le tableau de variations de f sur R*



Sagot :

f est (1/2) fois la somme de fonction derivables donc derivable

 

f'(x) vaut (1/2)(1-1/x^2) soit (x^2-1)/(2x^2) et x^2-1=(x-V2)(x+V2) donc...

 

f croit de -inf à -V2 decroit de -V2 à 0 et de 0 +V2 et croit a nouveau (0 valeur interdite)

 

Cherche "algorithme de Babylone" sur le Net. Ce probleme est conneu et resolu depuis 6000 ans... c'est un procede de calcul de racine carrées

Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. Pour des réponses claires et rapides, choisissez FRstudy.me. Merci et revenez souvent pour des mises à jour.