👤

FRstudy.me vous connecte avec des experts prêts à répondre à vos questions. Trouvez des solutions rapides et fiables à vos problèmes avec l'aide de notre communauté d'experts dévoués.

Bonjour pouvez vous m'aider pour mon exercice merci

Bonjour Pouvez Vous Maider Pour Mon Exercice Merci class=

Sagot :

Réponse :

1) Faux

2) Vrai

3) Faux

4) Vrai

Explications étape par étape

Il est important de toujours vérifier que la fonction est définie sur son intervalle de dérivation, ici c'est bien [tex]\mathbb{R}[/tex]

1) Décomposons f(x), on a d'une part [tex]-x[/tex] et d'autre part 2

Pour tout x dans R,

[tex]-x = (-1)*x[/tex] , donc la fonction [tex]f_2(x) = -x[/tex] admet pour dérivée [tex]f_2'(x) = -1[/tex]

Et 2 étant une constante, [tex]f_3(x) = 2[/tex] admet pour dérivée [tex]f_3'(x) = 0[/tex]

Si on compose les deux, on a [tex]f'(x) = f_2'(x) + f_3'(x) = -1 + 0 = -1 \neq 0[/tex]

2) En reprenant le mĂŞme processus, on trouve que

[tex]Soient :\\g_1(x) = x^3\\g_2(x) = -3x^2\\g_3(x) = -9x\\g_4(x) = 3\\[/tex]

On a alors [tex]g(x) = g_1(x) + g_2(x) + g_3(x) + g_4(x)[/tex]

D'oĂą

[tex]g'(x) = g_1'(x) + g_2'(x) + g_3'(x) + g_4'(x) \\ = 3x^2 + (-6x) + (-9) + 0[/tex]

Il suffit de développer la partie de droite pour retrouver ce résultat

3)

On trouve par le même procédé (je détaille de moins en moins) que [tex]h'(x) = (-6x^2) + 0[/tex]

D'oĂą

[tex]h'(-1) = -6 * (-1)^2 + 0\\= - 6 * 1\\= - 6\\\neq 10[/tex]

4)

En fait, la formulation est assez pompeuse, mais dire qu'une courbe est parallèle à l'axe des abscisses ça revient à dire que son coefficient directeur est égal à 0.

Le coefficient directeur de la tangente en un point, c'est par définition la dérivée en ce point

Finalement, on cherche simplement Ă  montrer que [tex]C'(2) = 0[/tex]

On a

[tex]C'(q) = -8q + 16 + 0\\C'(2) = -8*2 + 16 = 0 \\[/tex]

Ce qui est bien le résultat attendu

Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Chaque réponse que vous cherchez se trouve sur FRstudy.me. Merci de votre visite et à très bientôt.