👤

FRstudy.me propose un mélange unique de réponses expertes et de connaissances communautaires. Explorez une grande variété de sujets et trouvez des réponses fiables auprès de nos membres de la communauté expérimentés.

Construire les représentations graphiques de la fonction polynôme f et de la fonction rationnelle g défini par : f(x)= x²+6x+7; g(x)=-2x-5÷x+3 aidez-moi svp niveau 1èreS merci.

Sagot :

bjr

1)

• f(x) = x² + 6x + 7        définie sur R  

• f'(x) = 2x + 6

tableau :

x                    -3

f'(x)          -       0           +

f(x)   -∞                          +∞

              \       -2         /

• la représentation graphique est une parabole de sommet S(-3 ; -2)

On place quelques points pour la dessiner

x      -3       -2       -1        0

y      -2       -1        2        7

plus les symétriques par rapport à la droite d'équation  :  x = -3

2)

• g(x) = (-2x - 5)/(x + 3)                 définie sur R - {-3}

• dérivée d'un quotient  : (u/v)' = (u'v - uv')/v²

u : -2x-5       u' : -2

v : x + 3        v' : 1

g'(x) = [(-2)(x + 3) - (-2x - 5)(1)] / (x + 3)²

      =  -1/(x + 3)²

tableau

x                               -3

g'(x)               -           ||            -

g(x)    -2                    ||  +∞                    

                     \                        \  

                            -∞ ||                   -2

quand x tend vers ± ∞ g(x) a même limite que -2x/x soit -2

•asymptote horizontale : y = -2

asymptote verticale : x = -3

on place quelques points

centre de symétrie A(-3; -2)

View image Jpmorin3
View image Jpmorin3

Réponse :

Explications étape par étape :

■ Tu vas Te faire gronder !

   --> n' oublie pas de dire bonjour !

f(x) = x² + 6x + 7

        = (x+3)² - 2

        = (x+3)² - (√2)²

        = (x+3 - √2)(x+3 + √2)

Parabole en U de Minimum M(-3 ; -2)

la Parabole admet l' axe vertical

  de symétrie d' équation x = -3

g(x) = (-2x-5) / (x+3) définie sur IR - { -3 }

  g ' (x) = [ -2(x+3) + (2x+5) ] / (x+3)²

           = -1 / (x+3)² toujours négative

  donc g est toujours décroissante !

  le graphique de g admet 2 asymptotes :

   - une verticale d' équation x = -3

   - une horizontale d' équation y = -2

■ tableau commun :

  x --> -∞        -3-√2     -3,1    -3     -2,9      -2      -3+√2      +∞

f'(x) ->        négative               0               positive

f(x) -> +∞           0                  -2                  -1           0          +∞

g(x) -> -2        -2,7       -12      ║       8         -1          -1,3         -2

■ intersection par le calcul :

  (x+3)² - 2 = (-2x-5) / (x+3)

  posons X = x+3 :

       X² - 2 = (-2X+1) / X

       X³ - 2X² = 1 - 2X

       X³ - 2X² + 2X - 1 = 0

       (X-1) (X² - X +1) = 0

       (X-1) [ (X-0,5)² + 0,75 ] = 0

       X - 1 = 0 donc x+3 - 1 = 0 d' où x = -2 .