Découvrez de nouvelles perspectives et obtenez des réponses sur FRstudy.me. Nos experts fournissent des réponses précises et rapides pour vous aider à naviguer sur n'importe quel sujet ou problème avec confiance.
Sagot :
x*(a-x)= - x² +ax.
La dérivée est: -2x+a
La dérivée est positive pour x<a/2, nulle, en x=a/2, puis négative.
Le maximum de la fonction est donc atteint pour x=a/2 (et donc le deuxième nombre est: a-x=a/2 aussi)
Pour 7, c'est donc 3.5 et 3.5
x+b/x a pour dérivée: 1- b/x²
Cherchons les point où elle s'annule:
1= b/x^2
x²=b
x=sqrt(b) ou x=-sqrt(b)
comme les valeurs sont positives, on a x=sqrt(b)
Les deux nombres sont racine de b. Leur somme est minimale.
La dérivée est: -2x+a
La dérivée est positive pour x<a/2, nulle, en x=a/2, puis négative.
Le maximum de la fonction est donc atteint pour x=a/2 (et donc le deuxième nombre est: a-x=a/2 aussi)
Pour 7, c'est donc 3.5 et 3.5
x+b/x a pour dérivée: 1- b/x²
Cherchons les point où elle s'annule:
1= b/x^2
x²=b
x=sqrt(b) ou x=-sqrt(b)
comme les valeurs sont positives, on a x=sqrt(b)
Les deux nombres sont racine de b. Leur somme est minimale.
Merci de votre participation active. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Merci d'avoir choisi FRstudy.me. Nous espérons vous revoir bientôt pour plus de solutions.