👤

Trouvez des réponses à vos questions les plus pressantes sur FRstudy.me. Trouvez des solutions fiables à vos questions rapidement et facilement avec l'aide de nos experts expérimentés.

Bonjour j'ai un controle la semaine prochaine et nous aurons un exercice dans ce style mais je n'y arrive pas. Pourriez vous m'aider svp Merci par avance

Bonjour Jai Un Controle La Semaine Prochaine Et Nous Aurons Un Exercice Dans Ce Style Mais Je Ny Arrive Pas Pourriez Vous Maider Svp Merci Par Avance class=

Sagot :

Tenurf

Bonjour,

On va déjà s'intéresser à cette égalité et simplifier.

[tex](m+1)x-2m=x+2-\dfrac{3mx+3x-1}{2}\\\\<=> 2mx+2x-4m=2x+4-3mx-3x+1\\\\<=>(2m+2-2+3m+3)x-4m-5=0\\\\<=>(5m+3)x-(4m+5)=0[/tex]

Maintenant, on peut conclure.

Cas 1 - 5m+3 < 0 <=> [tex]\boxed{\sf \bf m<-\dfrac{3}{5}}[/tex]

Nous devons trouver les x tels que

[tex](5m+3)x-(4m+5)\geq0\\\\<=>x\leq \dfrac{4m+5}{5m+3}[/tex]

car 5m+3 est négatif

Cas 2 - 5m+3 = 0 <=> [tex]\boxed{\sf \bf m=-\dfrac{3}{5}}[/tex]

Nous devons trouver les x tels que

[tex](5m+3)x-(4m+5)\geq0\\\\<=>0\times x +\dfrac{12}{5}-5\geq 0\\\\<=>\dfrac{12-25}{5}=\dfrac{-13}{5}\geq 0[/tex]

C'est impossible, donc il n'y a pas de solution

Cas 3 - 5m+3 > 0 <=> [tex]\boxed{\sf \bf m>-\dfrac{3}{5}}[/tex]

Nous devons trouver les x tels que

[tex](5m+3)x-(4m+5)\geq0\\\\<=>x\geq \dfrac{4m+5}{5m+3}[/tex]

car 5m+3 est positif.

Merci

Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. Chaque question trouve une réponse sur FRstudy.me. Merci et à très bientôt pour d'autres solutions.