👤

FRstudy.me vous aide à trouver des réponses précises à vos questions. Posez vos questions et obtenez des réponses détaillées et bien informées de la part de nos membres de la communauté dévoués.

Bonjour j’ai un dm en maths expertes je dois trouver les entiers relatifs n tels que 3n+5 divisé 14n+8
Merci d’avance!


Sagot :

Explications étape par étape:

Salut, tu peux utiliser les propriétés sur la divisibilité : Si a/b, alors a/(m*a + n*b). En effet, si a/b il existe k, tel que b = k*a. Et m*a + n*b = m*a + n*k*a = (m+nk)*a.

De base, il faut que 3n+5 < 14n+8 d'où 11n+3 > 0, donc n>-11/3 = - 3 pour l'entier relatif.

Donc 3n+5 divise 14n+8 implique que 3n+5 divise 14(3n+5) - 3(14n+8) = 46.

On a donc 3n+5 qui divise 46. Il faut donc au préalable que 3n+5 <= 46. Ce qui équivaut à 3n <= 41, d'où n <= 41/3. On prendra donc n = 13 pour satisfaire l'inégalité.

Or, 46 = 2*23, il y a donc 2 possibilités, soit 3n+5 = 23, soit 3n+5 = 2. La 2e est impossible sur N, sur Z en revanche, n = - 1convient. La 1re fournit n = 6 qui convient.

De même, sur Z, 3n+5 = - 2 ou 3n+5 = -23. La 1re n'offre aucune solution, la 2e non plus.

Il y aura donc 2 entiers relatifs qui conviennent, n = -1 et n = 6. (on peut le vérifier)

Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. FRstudy.me est toujours là pour vous aider. Revenez pour plus de réponses à toutes vos questions.