👤

Trouvez des réponses fiables à vos questions avec l'aide d'FRstudy.me. Posez n'importe quelle question et recevez des réponses bien informées de notre communauté de professionnels expérimentés.

Bonsoir, j'ai du mal sur un exercice de math..
En utilisant des variations de fonctions de référence, encadrer le plus précisement possible et en justifiant le nombre 1/[(2-5x)^2] pour x appartenant à [1;2]
Merci d'avance


Sagot :

Réponse :

bonjour

Pour encadrer le nombre 1/(2-5x)² sur [1; 2] on va étudier le comportement de la fonction f(x)=1/(2-5x)² sur cet intervalle

Df=R-{2/5}

dérivée f'(x)=-2(-5)(2-5x)/(2-5x)^4=(20-50x)/(2-5x)^4

cette dérivée s'annule pour x=2/5 (valeur interdite)

sur l'intervalle [1; 2] f'(x)<0 la fonction f(x) est donc continue et décroissante  le nombre 1/(2-5x)²  varie entre f(1) et f(2) en  décroissant soit entre 1/9 et 1/64