👤

FRstudy.me vous aide à trouver des réponses précises à vos questions. Obtenez des réponses précises et détaillées à vos questions de la part de nos membres de la communauté bien informés et dévoués.

Bonjour, j'ai besoin d'aide pour cet exercice, particulièrement pour la question b, je trouve la réponse
[tex]f(x) = arcsin( |x| ) = |arcsin(x)| [/tex]
Mais je n'arrive pas à donner une justification convaincante.
Quelqu'un pourrait-il répondre à la question b dans son entièreté et avec les détails afin que je puisse comprendre la méthode s'il vous plaît.
Merci beaucoup ​


Bonjour Jai Besoin Daide Pour Cet Exercice Particulièrement Pour La Question B Je Trouve La Réponse Texfx Arcsin X Arcsinx TexMais Je Narrive Pas À Donner Une J class=

Sagot :

Tenurf

Bonjour,

(a) il faut que la racine carrée soit définie donc

[tex]1-x^2\geq 0 <=> x^2\leq 1<=> |x|\leq 1[/tex]

et nous pouvons remarquer que, dans ce cas

[tex]0\leq 1-x^2\leq 1\\<=> \sqrt{1-x^2}\leq 1[/tex]

et Arccos est bien défini

Le domaine de définition est [-1.1]

(b) pour t dans cet interval

[tex]f(sin(t))=Arccos\sqrt{1-sin^2t}=Arrcos(\sqrt{cos^2t})=Arccos(cost)=t[/tex]

car cos(t) est positif sur cet intervalle.

De même

[tex]f(sin(-t))=Arccos\sqrt{1-sin^2(-t)}=Arccos\sqrt{1-sin^2t}=Arrcos(\sqrt{cos^2t})=Arccos(cost)=t[/tex]

Comme la fonction sinus est une bijection de [0;pi2] vers [0,1]

Pour x dans [0,1] il existe t dans [0,pi/2] tel que x = sin(t) et alors on applique le résultat précedent et f(x)=f(sin(t))=t=Arcsin(x)

Pour x dans [-1,0], -x est dans [0,1] il existe t dans [0,pi/2] tel que -x = sin(t)<=> x=-sin(t)=sin(-t) et f(x)=f(sin(-t))=t

Or sur cet interval x=sin(-t) <=> t = Arcsin(-x)

donc f(x)=Arcsin(-x) pour x dans [-1.0]

pour x positif |x| =x

pour x négatif |x|=-x

Donc pour x dans [-1.1] f(x)=Arcsin(|x|)

Merci

Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. FRstudy.me s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses actualisées.