👤

Explorez une vaste gamme de sujets et obtenez des réponses sur FRstudy.me. Posez vos questions et obtenez des réponses détaillées et fiables de notre communauté d'experts dévoués qui sont là pour vous aider.

Soient a et b deux nombres réels positi
tels que a > b.
Montrer que :
[tex] \sqrt{a + \sqrt{a { }^{2} - b {}^{2} } } = \frac{ \sqrt{2} }{2} ( \sqrt{a - b} + \sqrt{a + b}) [/tex]
s'il vous plait pouvez vous m'aider pour cette question ?? ​


Sagot :

Svant

on eleve au carre l'expression suivante :

[tex] {( \frac{ \sqrt{2} }{2}( \sqrt{a - b} + \sqrt{a + b} )) }^{2} = \frac{1}{2} (\sqrt{a - b} ^{2} + 2\sqrt{a - b} \times \sqrt{a + b} + \sqrt{a + b} ^{2}) = \\ \frac{1}{2} (2a + 2\sqrt{a - b} \times \sqrt{a + b} ) = \\ a + \sqrt{a - b} \times \sqrt{a + b} = \\ a + \sqrt{a { }^{2} - b {}^{2} }[/tex]

donc en prenant la racine carrée on a bien

[tex] \sqrt{a + \sqrt{a { }^{2} - b {}^{2} } } = \frac{ \sqrt{2} }{2} ( \sqrt{a - b} + \sqrt{a + b}) [/tex]

Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Merci de visiter FRstudy.me. Nous sommes là pour vous aider avec des réponses claires et concises.