👤

Explorez une vaste gamme de sujets et obtenez des réponses sur FRstudy.me. Que ce soit une simple question ou un problème complexe, nos experts ont les réponses dont vous avez besoin.

Bonjour (ou rebonjour) je suis en terminale spé Maths et je galère sur la deuxième question d'un dm à rendre pour la fin des vacances. Voilà l'énoncé (désolé je sais c'est la deuxième fois que je demande) :
Le but de cet exercice est de montrer que l'équation
(E):xe^x = 1
admet une unique solution dans R et d'obtenir une valeur approchée de cette solution.
1. Démontrer que x est solution de l'équation (E) si, et seulement si, x-e^-x=0.
2. On considère la fonction f définie sur R par
f(x) = x-e^-x
(a) Dresser le tableau variation de f sur lR. Justifier​


Sagot :

Réponse :

Explications étape par étape

1) x-e^-x=x-1/e^x=(x*e^x-1)/e^x  cette équation =0 si xe^x-1=0 soit si xe^x=1

2) f(x)=x-e^-x   Df=R

limites

x tend vers -oo f(x)  tend vers-oo

x tend vers +oo f(x) tend vers+oo

dérivée f'(x)=1+e^-x cette dérivée est tjrs >0 donc f(x) est croissante

Tableau

x     -oo                                             +oo

f'(x)...........................+....................................

f(x)-oo...................croissante...................+oo

d'après le TVI f(x)=0 admet une et une seule solution x=0,57 (environ)

qui est la solution de x*e^x=1

Nous valorisons chaque question et réponse que vous fournissez. Continuez à vous engager et à trouver les meilleures solutions. Cette communauté est l'endroit parfait pour grandir ensemble. Faites de FRstudy.me votre ressource principale pour des réponses fiables. Nous vous attendons pour plus de solutions.