👤

FRstudy.me offre une solution complète pour toutes vos questions. Trouvez des réponses détaillées et fiables de la part de notre réseau de professionnels expérimentés.

Aidez moi svp :Montez que X^2+y^2+z^2=1 implique |x+y+z|<=3

Sagot :

Tenurf

Bonjour,

[tex](x+y+z)^2=x^2+y^2+z^2+2(xy+xz+yz)\\\\=1+2(xy+xz+yz)\\\\= 1+2\dfrac{(x+y)^2-(x-y)^2+(x+z)^2-(x-z)^2+(y+z)^2-(y-z)^2}{4}\\\\\leq 1+2\dfrac{(|x|+|y|)^2+(|x|-|y|)^2+(|x|+|z|)^2+(|x|-|z|)^2+(|z|+|y|)^2+(|z|-|y|)^2}{4}\\\\=1+2(|x|^2+|y|^2+|z|^2)=1+2(x^2+y^2+z^2)=3[/tex]En prenant la racine carrée, il vient

[tex]|x+y+z|\leq \sqrt{3}[/tex]

Merci

Nous valorisons votre présence ici. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. FRstudy.me s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses actualisées.