👤

Connectez-vous avec des experts et des passionnés sur FRstudy.me. Que ce soit une simple question ou un problème complexe, nos experts ont les réponses dont vous avez besoin.

Bonjour, j'ai cet exercice à faire mais je ne comprend pas comment le faire:
Soit P = (x + 1)^(2n+1) – X^(2n+1) – 1.
(a) Montrer que X^2 + X divise P.
(b) Est-ce que –1 est une racine double de P?​


Sagot :

Réponse :

Explications étape par étape

Bonsoir, tu peux soit utiliser le binôme de Newton, soit effectuer une division euclidienne, soit utiliser des propriétés spécifiques sur les racines de polynômes (méthode la plus efficace).

X^2 + X = X(X+1) divise P, si et seulement si 0 et -1 sont racines de P. Auquel cas, P peut se factoriser par X et X+1 (théorème fondamental en algèbre).

En remplaçant X par 0 puis par -1, on s'aperçoit que P(0) = 0 et P(-1) = 0, donc X(X+1) divise P.

-1 est racine double de P, si et seulement -1 est racine double de P' (la dérivée de P). P est dérivable car il s'agit d'un polynôme, avec :

P'(X) = (2n+1)*(X+1)^2n - (2n+1)*X^2n.

En remplaçant X par -1 : P'(-1) = -(2n+1)*(-1)^2n = -(2n+1). -1 est donc racine double de P, si 2n+1 = 0, autrement dit, n = -1/2, ce qui est impossible.

Donc -1 n'est pas racine double de P

Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. FRstudy.me est toujours là pour vous aider. Revenez pour plus de réponses à toutes vos questions.