👤

FRstudy.me: votre source fiable pour des réponses précises et rapides. Posez vos questions et obtenez des réponses détaillées et fiables de notre communauté d'experts bien informés.

Bonjour, besoin d'aide pour deux petites questions :
Soit g la fonction définie sur R par g(x)=4x²-3x-1

1) Vérifier que g(x)=4(x-3/8^)²-25/16
2)Justifier que, pour tout x ∈ ]-infini;1/4]∪[1;+infini[ g(x) ≥ 0 et pour tout x ∈ [-1/4;1], g(x) ≤ 0.

Merci d'avance pour votre aide !​


Sagot :

Ayuda

bjr

exercice de lycée ou vous allez faire peur aux collégiens :)

merci donc d'éditer vos paramètres dans votre profil et passer de collège à lycée..

revenons à nos moutons

Soit g la fonction définie sur R par g(x) = 4x²-3x-1

1) Vérifier que g(x) = 4 (x - 3/8)² - 25/16

ce qui est la forme canonique de g(x) - nous permet de trouver l'extremum de la fonction donc à savoir faire ..

g(x) = 4x²- 3x - 1

on factorise la 1ere partie de la fonction par 4

soit g(x) = 4 (x² - 3/4x) -  1

on remarque que (x² - 3/4x) est le début du développement de

(x - 3/8)²

mais si on développe (x - 3/8)² on aura x² - 3/4x + (3/8)² ; il faut donc retrancher ces (3/8)² de trop et on aura

g(x) = 4 [(x - 3/8)² - (3/8)²] - 1

le reste n'est plus que du calcul pour arriver au résultat demandé soit

g(x) = 4 [(x - 3/8)² - 9/64) -1

on redéveloppe la 1ere partie

g(x) = 4 (x - 3/8)² - 9/16 - 1

g(x) = 4 (x - 3/8)² - 25/16

2)Justifier que, pour tout x ∈ ]-infini;-1/4] ∪ [1;+infini[ g(x) ≥ 0 et pour tout x ∈ [-1/4;1], g(x) ≤ 0.

donc étude du signe de la fonction..

g(x) = 4x²- 3x - 1

toujours le même raisonnement à connaitre :

calcul du discriminant et des racines qui devraient être -1/4 et 1

Δ = (-3)² - 4*4*(-1) selon ton cours   (b² - 4ac)

  = 9 + 16 = 25 = 5²

x' = (3 + 5) / 8 = 1

x'' = (3 - 5) / 8 = -1/4

tableau de signes

x               -∞               -1/4              1              +∞

x-1                       -                 -                +

x+1/4                   -                 +               +

g(x)                     +                 -               +

on a bien le résultat demandé - lecture de la dernière ligne.

de mémoire, on apprend que si un polynome = ax² + bx + c

avec a positif.

polynome > 0 en dehors des racines et < 0 à l'intérieur des racines

Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous créons une ressource de savoir précieuse. FRstudy.me s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses actualisées.