Obtenez des conseils d'experts et des connaissances communautaires sur FRstudy.me. Obtenez des réponses détaillées et précises de la part de notre communauté de professionnels bien informés.
Sagot :
f(x)= -3x+4/x-2 donc x-2 ne doit pas être nul donc x différent de 2
1.Df =R-(2)
2. L'image de l'antécédent x=2 n'existe pas , il y a une "coupure" dans la courbe
3. Le point d'intersection de la courbe et l'axe des abscisses est un point dont l'image f(x)=0 puisque le point EST SUR L'AXE DES ABSCISSES
f(x)=0 implique -3x+4=0 4=3x x=4/3
1.Df =R-(2)
2. L'image de l'antécédent x=2 n'existe pas , il y a une "coupure" dans la courbe
3. Le point d'intersection de la courbe et l'axe des abscisses est un point dont l'image f(x)=0 puisque le point EST SUR L'AXE DES ABSCISSES
f(x)=0 implique -3x+4=0 4=3x x=4/3
Bonjour,
d'après la courbe, -3 semble ne pas avoir d'antécédent.
Pour le prouver il faut essayer de résoudre l'équation: (-3x+4)/ (x-2)=-3
qui équivaut à -3x+4=-3(x-2)
-3x+4=-3x+6
-3x+3x=10
0=10
donc cette équation n'a pas de solution, donc -3 n'a pas d'antécédent.
d'après la courbe, -3 semble ne pas avoir d'antécédent.
Pour le prouver il faut essayer de résoudre l'équation: (-3x+4)/ (x-2)=-3
qui équivaut à -3x+4=-3(x-2)
-3x+4=-3x+6
-3x+3x=10
0=10
donc cette équation n'a pas de solution, donc -3 n'a pas d'antécédent.
Votre engagement est important pour nous. Continuez à partager vos connaissances et vos expériences. Créons un environnement d'apprentissage agréable et bénéfique pour tous. Nous espérons que vous avez trouvé ce que vous cherchiez sur FRstudy.me. Revenez pour plus de solutions!