👤

FRstudy.me vous aide à trouver des réponses précises à vos questions. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses fiables et complètes à toutes vos questions pressantes.

es parents de Charlotte souhaitent l’inscrire dans le club d’équitation le plus proche de chez eux. Le club leur propose trois formules différentes : • Formule A : 18 € la séance. • Formule B : 165 € par carte de 10 séances. • Formule C : Paiement d’une cotisation annuelle de 70 € plus 140 ( par carte de 10 séances ).   PARTIE 1 :  1. Vérifier que le coût pour 7 séances est de 126 € pour la formule A, 165 € pour la formule B et 210 € pour la formule C. 2. Calculer le coût de 20 séances pour ces trois formules. Quelle est la formule la plus avantageuse dans ce cas ? PARTIE 2 :  Charlotte désirant faire du cheval toute l’année, ses parents décident de comparer les formules B et C. 1. Reproduire et compléter le tableau suivant sur votre copie. Aucune justification n’est demandée. 

Sagot :

Les parents de Charlotte souhaitent l’inscrire dans le club d’équitation le plus proche de chez eux. Le club leur propose trois formules différentes :
Formule A : 18 € la séance.
Formule B : 165 € par carte de 10 séances.
Formule C : Paiement d’une cotisation annuelle de 70 € plus 140 ( par carte de 10 séances ).  

PARTIE 1

1. Vérifier que le coût pour 7 séances est de 126 € pour la formule A, 165 € pour la formule B et 210 € pour la formule C.

- Formule A :
18 x 7 = 126 €
- Formule B :
165 €
- Formule C :
70 + 140 = 210 €

2. Calculer le coût de 20 séances pour ces trois formules. Quelle est la formule la plus avantageuse dans ce cas ?
- Formule A :
18 x 20 = 360 €
- Formule B :
2 x 165 = 330 €
- Formule C :
70 + 2 x 140 = 70 + 280 = 350 €
La formule la plus avantageuse est donc la formule B

PARTIE 2

Charlotte désirant faire du cheval toute l’année, ses parents décident de comparer les formules B et C.

1. Reproduire et compléter le tableau suivant sur votre copie. Aucune justification n’est demandée

        
                                     1 carte                   2 cartes                3 cartes
Tarif formule B              165 €               2 x 165 = 330 €       3 x 165 = 495 €
Tarif formule C            70 + 140 =              70 + 2 x 140        70 + 3 x 140 = 490 €  
                                       210 €                       = 350 €