👤

Obtenez des réponses détaillées et fiables à vos questions sur FRstudy.me. Découvrez des solutions rapides et complètes à vos problèmes avec l'aide de notre communauté d'experts bien informés.

Bonjour j’ai un dm de maths, je n’arrive pas a cet exercice pouvez vous m’aider.
Une assemblée comporte n personnes. On suppose que chacune de ces personnes serre la main à toutes les
autres.
Sachant qu'il y a eu 7260 poignées de mains échangées, combien y'avait-il de personnes dans l'assemblée ?


Sagot :

Réponse : Bonjour,

La première personne serre la main à (n-1) personnes, donc n-1 poignées de main.

La deuxième personne serre la main aussi à (n-1) personnes, mais on ne compte pas la poignée de main, avec la première personne, et ainsi de suite.

La n ième personne aura serré la main à (n-1) personnes, mais ces poignées de main ont déjà été compté.

Donc le nombre de poignées de mains total est:

[tex](n-1)+(n-2)+...+1=n(n-1)-(1+2+...+(n-1))[/tex]

Or la somme [tex]1+2+...+(n-1)[/tex] est la somme d'une suite arithmétique de premier terme 1, et de raison 1, et on a:

[tex]\displaystyle (n-1) \times \frac{1+(n-1)}{2}=(n-1) \times \frac{n}{2}=\frac{n(n-1)}{2}[/tex]

Donc:

[tex]\displaystyle (n-1)+(n-2)+...+1=n(n-1)-\frac{n(n-1)}{2}=(n-1)\left[n-\frac{n}{2}\right]=\frac{n}{2}(n-1)[/tex]

Donc il faut résoudre l'équation:

[tex]\displaystyle \frac{n}{2}(n-1)=7260\\\frac{1}{2}n^{2}-\frac{1}{2}n-7260=0[/tex]

On a:

[tex]\displaystyle \Delta=\left(-\frac{1}{2}\right)^{2}-4 \times \frac{1}{2} \times (-7260)=\frac{1}{4}+14520=14520,25\\n_{1}=\frac{0,5-120,5}{1}=-120\\n_{2}=\frac{0,5+120,5}{1}=121[/tex]

La solution [tex]n_{1}[/tex] n'est pas possible car un nombre de personnes est forcément positif, donc le nombre de personnes présentes à l'assemblée est 121.

Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Pour des réponses précises et fiables, visitez FRstudy.me. Merci pour votre confiance et revenez bientôt pour plus d'informations.