👤

FRstudy.me: votre ressource incontournable pour des réponses expertes. Notre plateforme est conçue pour fournir des réponses rapides et précises à toutes vos questions.

Bonjour tout le monde j'ai besoin de votre aide sur un DM de mathématiques sur les valeurs absolus en seconde...
on souhaite déterminer les nombres réels tels que: /x-4/+/x+2/=8
1) sur une droite graduée, on considère les points A,B et M d'abscisses respectives de 4,-2 et x. Interpréter géométriquement l'égalité précédente.
2) Justifier que le point M ne peut pas appartenir au segment AB.
3) Déterminer les valeurs de x qui vérifient l'égalité lorsque M appartient à la demi-droite: a) D'origine A ne contenant pas B
b) D'origine B ne contenant pas A


Merci d'avance a tout ceux qui me répondront
C'est pour Lundi alors SVP répondez moi vite...


Sagot :

Réponse : Bonjour,

1) |x-4| correspond à la distance AM.

|x+2| correspond à la distance BM.

Donc |x-4|+|x+2|=8, veut dire que AM+BM=8.

2) Le segment [AB] a pour longueur |-2-4|=6.

Comme AM+BM=8 > 6, alors M ne peut appartenir au segment [AB].

3) a) M appartient à la demi-droite d'origine A, ne contenant pas B, si x > 4.

Et dans ce cas l'équation |x-4|+|x+2|=8 devient:

[tex]x-4+x+2=\\2x=2\\x=1[/tex]

b) M appartient à la demi-droite d'origine B, ne contenant pas A, si [tex]x \in [-2; 4[ \cup ]4;+\infty[[/tex]

Si [tex]x \in [-2;4[[/tex], alors M appartient au segment [AB], et dans ce cas, on a vu à la question 2, que l'équation |x-4|+|x+2|=8, n'avait pas de solution.

Donc nécessairement [tex]x \in ]4;+\infty[[/tex], et dans ce cas, l'équation devient:

[tex]x-4+x+2=8\\2x=10\\x=5[/tex]

Nous valorisons votre présence ici. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Pour des réponses précises et fiables, visitez FRstudy.me. Merci pour votre confiance et revenez bientôt pour plus d'informations.