👤

Obtenez des conseils avisés et des réponses précises sur FRstudy.me. Notre plateforme de questions-réponses offre des réponses fiables et complètes pour vous aider à prendre des décisions éclairées rapidement et facilement.

Bonjour,

j'espère que vous allez tous très bien et que vous passez une bonne journée.

Je suis en seconde et je suis totalement bloquée sur mon dm de maths qui est pour la fin de la semaine, s'il vous plaît aidez moi...


Sujet:


ABC est un triangle.

I est le milieu de [AC], J est celui de [BI] et K est le point défini par

BK*= 1/3 BC*


1) Construire une figure.

2) Démontrer que AJ*=1/2 AB*+1/4AC*

3) Démontrer que AK*=2/3 AB*+1/3AC*

4) Démontrer que A, J et K sont alignés.


*=la flèche pour dire que c'est un vecteur


Merci d'avance, bonne journée.


Sagot :

Réponse :

        A

                                   / \  

                                 /  J   \I

                           B /...K........\C

2) démontrer que vec(AJ) = 1/2)vec(AB) + 1/4)vec(AC)

d'après la relation de Chasles on a; vec(AJ) = vec(AB) + vec(BJ)

or  vec(BJ) = 1/2)vec(BI)

et  vec(BI) = vec(BA) + vec(AI)   relation de Chasles

on a; vec(AI) = 1/2)vec(AC)

donc vec(AJ) = vec(AB) + 1/2)(vec(BA) + 1/2)vec(AC))

                    = vec(AB) + 1/2)(- vec(AB) + 1/2)vec(AC))

                    = vec(AB) - 1/2)vec(AB) + 1/4)vec(AC)

                    = 1/2)vec(AB) + 1/4)vec(AC)

3) démontrer que vec(AK) = 2/3)vec(AB) + 1/3)vec(AC)

d'après la relation de Chasles on a; vec(AK) = vec(AB) + vec(BK)

or vec(BK) = 1/3)vec(BC)  et  vec(BC) = vec(BA) + vec(AC) relation de Chasles

donc  vec(AK) = vec(AB) + 1/3)vec(BC)

                     = vec(AB) + 1/3)(vec(BA) + vec(AC))

                     = vec(AB) + 1/3)(- vec(AB) + vec(AC))

                     = vec(AB) - 1/3)vec(AB) + 1/3)vec(AC)

                     = 2/3)vec(AB) + 1/3)vec(AC)

4) démontrer que A; J et K sont alignés

il suffit de montrer que les vecteurs AK et AJ sont colinéaires

vec(AK) = 2/3)vec(AB) + 1/3)vec(AC)

vec(AJ) = 1/2)vec(AB) + 1/4)vec(AC)

or vec(AK) = 4/6)vec(AB) + 4/12)vec(AC)

                = 4/3)(1/2vec(AB) + 1/4)vec(AC))

donc vec(AK) = 4/3)vec(AJ) ; donc   les vecteurs AK et AJ sont colinéaires

on en déduit que les points A, J et K sont alignés      

Explications étape par étape

Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Pour des solutions rapides et fiables, pensez à FRstudy.me. Merci de votre visite et à très bientôt.