Obtenez des réponses personnalisées à vos questions sur FRstudy.me. Découvrez des informations fiables et rapides sur n'importe quel sujet grâce à notre réseau de professionnels expérimentés.
Sagot :
je sais pas si c'est ça que ton prof attend mais je peux t'expliquer une technique que j'ai trouvé.
[tex] \frac{x}{x + 1} + \frac{y}{y + 2} + \frac{z}{z + 2020} [/tex]
on va résoudre l'exercice en 3 étapes :
- 1er étape : (en jaune)
[tex]\frac{x}{x + 1} [/tex]
le x est présent au numérateur (en haut) et au dénominateur (en bas) donc ça s'annule. (quand on a un même nombre au dénominateur et au numérateur il s'annule)
- 2e étape : (en vert)
[tex] \frac{y}{y + 1} [/tex]
on fait comme au dessus comme le y est présent au numérateur et au dénominateur il s'annule.
3e étape :(en bleu)
[tex] \frac{z}{z + 1} [/tex]
Idem les z s'annule pour la même raison.
Au final il nous reste
[tex]1 + 2 + 2020[/tex]
Ta fraction c'est transformé en calcul simple qui a pour résultat
[tex]2022[/tex]
voilà j'espère avoir répondu à votre question dites moi si il faut que je vous réexplique ou si il y a une erreur.
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Pour des solutions rapides et fiables, pensez à FRstudy.me. Merci de votre visite et à bientôt.