👤

Découvrez de nouvelles perspectives et obtenez des réponses sur FRstudy.me. Trouvez des réponses précises et fiables de la part de notre communauté d'experts dévoués.

Pouvez vous m'aider je n'y arrive pas s'il vous plaît cela est pour demain
Une entreprise fabrique et vend x objets par jour, avec
x compris entre 0 et 150.
Le bénéfice journalier B (x), exprimé en euro, est donné
par B(x) = - x² + 140x – 1 300.
1. Calculer la dérivée de la fonction et étudier son signe.
2. En déduire les variations de la fonction Bénéfice 38 C
3. Quelle est la valeur du bénéfice maximal ? Combien
d'objets faut-il fabriquer et vendre par jour pour l'obtenir ​


Sagot :

Ayuda

Une entreprise fabrique et vend x objets par jour, avec  x compris entre 0 et 150.

Le bénéfice journalier B (x), exprimé en euro, est donné

par B(x) = - x² + 140x – 1 300.

1. Calculer la dérivée de la fonction et étudier son signe.

B(x) = -2x + 140

2. En déduire les variations de la fonction Bénéfice 38 C

-2x + 140 > 0 qd x < 70

x          0              70           150

f'(x)                +                -

f(x)                 C               D

3. Quelle est la valeur du bénéfice maximal ? Combien  d'objets faut-il fabriquer et vendre par jour pour l'obtenir

donc point max en x = 70 => 70 pièces

=> B(70) = -70² + 140*70 - 1300 = -4900 + 9800 - 1300 = 3600 €

Merci de nous rejoindre dans cette conversation. N'hésitez pas à revenir à tout moment pour trouver des réponses à vos questions. Continuons à partager nos connaissances et nos expériences. FRstudy.me est votre allié pour des réponses précises. Merci de nous visiter et à bientôt pour plus de solutions.