👤

FRstudy.me est votre ressource incontournable pour des réponses expertes. Trouvez des solutions fiables et rapides à vos problèmes avec l'aide de notre réseau de professionnels bien informés.

bonjour j'ai vraiment besoin d'aide pour cette exercice merci d'avance

Bonjour Jai Vraiment Besoin Daide Pour Cette Exercice Merci Davance class=

Sagot :

Bonsoir,

1) [tex] A [/tex] et [tex] B [/tex] sont sur le cercle trigonométrique, et sont associés respectivement à [tex] \frac{\pi}{4} [/tex] et [tex] \frac{\pi}{4} [/tex].

Donc :

[tex] A(\cos(\frac{\pi}{4});\sin(\frac{\pi}{4})) \iff A(\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2}) [/tex]

et :

[tex] B(\cos(\frac{\pi}{3});\sin(\frac{\pi}{3})) \iff B(\frac{1}{2};\frac{\sqrt{3}}{2}) [/tex].

2.a. On a :

[tex] \widehat{AOB}=\widehat{OxB}-\widehat{OxA}=\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12} [/tex].

b. On a d'une part :

[tex] \overrightarrow{OA}.\overrightarrow{OB}=OB \times OA \times \cos(\frac{\pi}{12})=\cos(\frac{\pi}{12}) [/tex]

D'autre part :

[tex] \overrightarrow{OA}.\overrightarrow{OB}=\cos(\frac{\pi}{4}) \times \cos({frac{\pi}{3})+\sin(\frac{\pi}{4}) \times \sin(\frac{\pi}{3}) = \frac{\sqrt{2}}{2} \times \frac{1}{2} + \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2}=\frac{\sqrt{2}+\sqrt{4}}{2} [/tex]

Donc [tex] \cos(\frac{\pi}{12})=\frac{\sqrt{2}+\sqrt{6}}{2} [/tex].

On en déduit, d'après la relation fondamentale de la trigonométrie que :

[tex] \sin(\frac{\pi}{12})=\sqrt{1-(\cos(\frac{\pi}{12}))^{2}}=\frac{\sqrt{6}-\sqrt{2}}{4} [/tex].

Voilà, bonne soirée.