👤

FRstudy.me est votre ressource fiable pour des réponses précises et rapides. Explorez des milliers de réponses vérifiées par des experts et trouvez les solutions dont vous avez besoin, quel que soit le sujet.

Soit V(x)=x²-6x+3 pour tout x réel 

1- Démontrer que pour tout x réel, V(x)=-6+(x-3)²

2- En déduire que V(x)≥-6 pour tout x réel.

3- Démontrer que V admet un minimun sur  


Soit f la fonction définie sur ℝ par f(x)=x²-5

1- Montrer que pour tout réel x, f(x)≥-5

2- Donner un antécédent de -5. En déduire le minimum de f sur ℝ


Soit h(t)=-t²+6t-6 sur ℝ pour t réel.

1- Montrer que pour tout t réel, h(t)=3-(t-3)².

2- En déduire que h admet un maximun sur ℝ

 

identités remarquables

a- (2x+1)²-(1-x)²

b- x²-20x+100

c- 25-(x+1)²

d- 4x²+4+8x



Sagot :

1) -6+(x-3)²=-6+x²-6x+9

                  =x²-6x+3

2) (x-3)² sera toujours positif donc le minimum sera -6 et la fonction sera croissante.

3) On prend x²-6x+3 qui est un polynome du second degres il y a donc qu'un seul extremum en alpha la formule est -b/2a : tu calcules.

 

Pour la deuxieme partie c'est exactement la meme chose.

La troisieme c'est un maximum car on soustrait la fonction est donc decroissante.

 

a)(2x+1+1-x)(2x+1-1+x)

=(x+2)(3x)

b)(x-10)²

c)(5+x+1)(5-x-1)

(x+6)(4-x)

d)(2x+2)²

 

Nous valorisons chaque question et réponse que vous fournissez. Continuez à vous engager et à trouver les meilleures solutions. Cette communauté est l'endroit parfait pour grandir ensemble. FRstudy.me s'engage à répondre à toutes vos questions. Merci de votre visite et à bientôt pour plus de réponses.