👤

Participez aux discussions sur FRstudy.me et obtenez des réponses pertinentes. Découvrez des réponses détaillées et précises à vos questions de la part de nos membres de la communauté bien informés et dévoués.

Bonjour, s'il vous plaît j'ai besoin d'aide pour cette exercice. Merci beaucoup!

Bonjour Sil Vous Plaît Jai Besoin Daide Pour Cette Exercice Merci Beaucoup class=

Sagot :

Tenurf

Bjr

1)

f est bien définie et dérivable sur [0;2] car

[tex]\dfrac1{2}x+3 \geq 3 > 0[/tex]

et sa dérivée sur cet intervalle est

[tex]f'(x)=\dfrac1{2} \times \dfrac{1}{2} \times \dfrac{1}{\sqrt{\frac{1}{2}x+3}} >0[/tex]

f est croissante et

[tex]f(0)=\sqrt{3}\\\\f(2)=\sqrt{4}=2[/tex]

f est continue donc

[tex]f[0;2] =[\sqrt{3};2][/tex]

2)

[tex]u_1=f(u_0)=\sqrt{-5/2+3}=\sqrt{1/2}=\dfrac{\sqrt{2}}{2}[/tex]

Montrer que

[tex]0 \leq u_n \leq u_{n+1} \leq 2[/tex] est vrai pour tout [tex]n\geq 1[/tex] par récurrence

Initialisation

[tex]0 \leq u_1 \leq 2[/tex]

comme [tex]u_2=f(u_1), 0 \leq u_2 \leq 2[/tex], et

[tex]u_2=\sqrt{\sqrt{2}/4+3}=\dfrac{\sqrt{\sqrt{2}+12}}{2}\geq\dfrac{\sqrt{9}}{2}=\dfrac{3}{2} \geq \dfrac{\sqrt{2}}{2}=u_1[/tex]

donc c'est vrai au rang 1

Hérédité

soit p entier non nul quelconque et supposons que

[tex]0 \leq u_p \leq u_{p+1} \leq 2[/tex]

Alors comme f est croissante, et avec les résultats du 1) et l'hyupothèse de récurrence

[tex]0 \leq f(0)=\sqrt{3} \leq f(u_p) \leq f(u_{p+1}) \leq f(2)=2\\\\0 \leq u_{p+1} \leq u_{p+2} \leq 2[/tex]

Donc c'est vrai au rang p+1

Conclusion

Nous venons de démontrer par récurrence que

[tex]0 \leq u_n \leq u_{n+1} \leq 2[/tex] est vrai pour tout [tex]n\geq 1[/tex]

3) la suite (un) est donc croissante et majorée par 2 donc elle converge vers une limite l telle que [tex]0 \leq l \leq 2[/tex] et f(l)=l

[tex]l^2=\dfrac{1}{2}l+3 \iff 2l^2-l-6=(2l+3)(l-2)=0[/tex]

On peut trouver la factorisation avec le discriminant = 1+4*2*6=49=7*7 donc les racines sont 8/4=2 et -6/4=-3/2

Comme l est positif par passage à la limite de l'inégalité du 2) la seule racine possible est l =2

De ce fait, la suite (un) converge vers 2.

Merci

Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Merci de choisir FRstudy.me. Revenez bientôt pour découvrir encore plus de solutions à toutes vos questions.