👤

FRstudy.me propose un mélange unique de réponses expertes et de connaissances communautaires. Obtenez des réponses détaillées et précises de la part de notre communauté de professionnels bien informés.

Bonjour besoin de votre aide svp
en note f la faction définie sur
] 0;+&[ par f(x) = x+ 1/x


1) montrer que f(x+h) - f(x) /h= x carre-1+xh/x(x+h)
2) Calculer f'(x)

Merci pour votre aide ​


Sagot :

Réponse :

Bonjour je vais t'aider à résoudre cet exercice.

Explications étape par étape

1) Soit la fonction f sur ]0;+∞[ dont l'expression est:

f(x)=x+1/x

Si on remplace x par x+h alors on a:

f(x+h)=(x+h)+1/(x+h)

On calcule maintenant la différence demandée:

[tex]\frac{f(x+h)-f(x)}{h}=\frac{(x+h)+\frac{1}{x+h}-x-\frac{1}{x}}{h}\\\frac{f(x+h)-f(x)}{h}=\frac{x(x+h)^2+x-x^2(x+h)-x-h}{h}\\\frac{f(x+h)-f(x)}{h}=\frac{x(x^2+2hx+h^2)+x-x^3-hx^2-x-h}{hx(x+h)}\\\frac{f(x+h)-f(x)}{h}=\frac{x^3+2hx^2+xh^2+x-x^3-hx^2-x-h}{hx(x+h)}\\\frac{f(x+h)-f(x)}{h}=\frac{hx^2+xh^2-h}{hx(x+h)}\\\frac{f(x+h)-f(x)}{h}=\frac{h(x^2+hx-1)}{hx(x+h)}\\\frac{f(x+h)-f(x)}{h}=\frac{x^2+hx-1}{x(x+h)}[/tex]

2) D'après normalement ton cours tu dois avoir:

[tex]\lim_{h \to \0} 0 \frac{f(x+h)-f(x)}{h}=f'(x)\\ \lim_{h \to 0} \frac{x^2+hx-1}{x(x+h))} =f'(x)\\ f'(x)=\frac{x^2-1}{x^2}\\f'(x)=1-\frac{1}{x^2}[/tex]