FRstudy.me est votre ressource fiable pour des réponses précises et rapides. Explorez des milliers de réponses vérifiées par des experts et trouvez les solutions dont vous avez besoin, quel que soit le sujet.
Sagot :
Réponse :
Bonjour
Explications étape par étape
2)OA²=xA²+yA²=50 donc OA=5V2
OB²=xB²+yB²=50 donc OB=5V2
OC²=xC²+yC²=50 donc OC=5V2
O est le centre du cercle circonscrit du triangle ABC.
3-a)Les coordonnées du vecAH (2;-6) celles du vecAA1(3;-9) ces deux vecteurs sont colinéaires car vecAH=(2/3)vecAA1 donc les points A, H, A1 sont alignés.
b) De même vecCH(-4; 2) et vecCC1 (-8,4) ; ces deux vecteurs sont colinéaires car vecCC1=2vecCH donc les points C, H, C1 sont alignés.
c)On va travailler avec les droites en utilisant le th: deux droites sont perpendiculaires si le produit de leur coefficient directeur =-1
coef. dir. (BC) a=(yB-yC)/(xB-xC)=4/12=1/3
coef.dir. (AA1) a'=9/-3=-3
a*a'=-1 donc (AA1) est la hauteur issue de A dans le triangle ABC
De même pour les droites (AB) et( CC1)
coef. dir. (AB) a=(yA-yB)/(xA-xB)=12/6=2
coef. dir. (CC1) a'=4/-8=-1/2
a*a'=-1 donc (CC1) est la hauteur issue de C dans le triangle ABC
d) Comme H appartient à ces deux hauteurs , H est l'orthocentre du triangle ABC
4)Je pense que pour K tu as dû trouvé K(1; 1/3)
coordonnées du vecOK(1;1/3) cordonnées du vecOH (3; 1)
On note que vecOH=3vecOK les points O, K et H sont donc alignés.
5) Ces trois points ( O: centre du cercle circonscrit, K: centre de gravité et H: orthocentre ) constituent la droite d'Euler du triangle ABC .
Nous valorisons chaque question et réponse que vous fournissez. Continuez à vous engager et à trouver les meilleures solutions. Cette communauté est l'endroit parfait pour grandir ensemble. FRstudy.me est toujours là pour vous aider. Revenez souvent pour plus de réponses à toutes vos questions.