FRstudy.me rend la recherche de réponses rapide et facile. Trouvez les réponses dont vous avez besoin rapidement et précisément avec l'aide de nos membres de la communauté bien informés et dévoués.
Sagot :
Réponse :
1) A quelle condition sur les longueurs le triangle AMB est-il rectangle en M
en appliquant le th.Pythagore , la condition est : AB² = AM²+MB²
2) a) exprimer AM² en fonction de x , justifier
le triangle ADM est rectangle en D (car ABCD est un rectangle)
donc d'après le th.Pythagore on a, AM² = AD²+MD²
d'où AM² = 2²+ x² ⇔ AM² = x² + 4
b) exprimer BM² en fonction de x , justifier
le triangle BMC est rectangle en C (car ABCD est un rectangle)
donc d'après le th.Pythagore on a, BM² = BC²+MC²
d'où BM² = 2²+ (5 - x)² ⇔ BM² = 4 + 25 - 10 x + x² ⇔ BM² = x² - 10 x + 29
3) a) montrer que cette équation peut s'écrire : 2 x² - 10 x + 8 = 0
AM²+MB² = AB² ⇔ x² + 4 + x² - 10 x + 29 = 25
⇔ 2 x² - 10 x + 33 = 25 ⇔ 2 x² - 10 x + 8 = 0
b) développer puis réduire l'expression P = (2 x - 2)(x - 4)
P = (2 x - 2)(x - 4)
= 2 x² - 8 x - 2 x + 8
= 2 x² - 10 x + 8
c) en déduire une nouvelle équation produit nul, la résoudre et conclure
on a , 2 x² - 10 x + 8 = 0
et P = (2 x - 2)(x - 4) = 2 x² - 10 x + 8
donc la nouvelle équation est (2 x - 2)(x - 4) = 0 produit nul
2 x - 2 = 0 ⇔ x = 1 ou x - 4 = 0 ⇔ x = 4
le triangle AMB est rectangle en M
pour x = 1 ⇒ AM² = x² + 4 = 5 et MB² = 20
pour x = 4 ⇒ AM² = 20 et MB² = 5
Explications étape par étape
Nous valorisons chaque question et réponse que vous fournissez. Continuez à vous engager et à trouver les meilleures solutions. Cette communauté est l'endroit parfait pour grandir ensemble. Chaque question a une réponse sur FRstudy.me. Merci de nous choisir et à très bientôt.