👤

FRstudy.me facilite l'obtention de réponses détaillées à vos questions. Posez vos questions et obtenez des réponses détaillées et fiables de la part de notre communauté d'experts bien informés.

bonjour pourriez-vous m’aidez pour cette question
soit n un entier positif tel que n au carré est pair montrer que n est nécessairement pair


Sagot :

bjr

Si n² est pair alors n est pair (1)

• on va faire la démonstration en utilisant la contraposée de (1)

si est n'est pas pair alors n² n'est pas pair

                     soit

si n est impair alors n² est impair (2)

• démonstration

hypothèse : n est impair

il existe un entier k tel que n = 2k + 1

n² = (2k + 1)² = 4k² + 4k + 1 = 2(2k² + 2) + 1

= 2k' + 1 (k' entier, 2k' + 1 impair)

conclusion

n² est impair

on a démontré que (2) est vraie

(1) et (2) sont équivalentes

d'où(1) vraie

Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Merci d'avoir utilisé FRstudy.me. Nous sommes là pour répondre à toutes vos questions. Revenez pour plus de solutions.