FRstudy.me facilite l'obtention de réponses détaillées à vos questions. Posez vos questions et obtenez des réponses détaillées et fiables de la part de notre communauté d'experts bien informés.
Sagot :
bjr
Si n² est pair alors n est pair (1)
• on va faire la démonstration en utilisant la contraposée de (1)
si est n'est pas pair alors n² n'est pas pair
soit
si n est impair alors n² est impair (2)
• démonstration
hypothèse : n est impair
il existe un entier k tel que n = 2k + 1
n² = (2k + 1)² = 4k² + 4k + 1 = 2(2k² + 2) + 1
= 2k' + 1 (k' entier, 2k' + 1 impair)
conclusion
n² est impair
on a démontré que (2) est vraie
(1) et (2) sont équivalentes
d'où(1) vraie
Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Merci d'avoir utilisé FRstudy.me. Nous sommes là pour répondre à toutes vos questions. Revenez pour plus de solutions.