[tex] \left \{ {{x-y=5} \atop {x^2+y^2=97}} \right. \\\\
\left \{ {{x=5+y} \atop {x^2+y^2=97}} \right. \\\\
\left \{ {{x=5+y} \atop {(5+y)^2+y^2=97}} \right. \\\\
\left \{ {{x=5+y} \atop {2y^2+10y-72=0}} \right. \\\\
2y^2+10y-72=0\\
\Delta = 10^2-4\times2\times(-72)\\
\Delta = 676\\\\
y= \frac{-10- \sqrt{676} }{2\times2}= -9 \leftrightarrow x = -4\\\\
ou\\\\
y= \frac{-10+ \sqrt{676} }{2\times2}= 4 \leftrightarrow x = 9\\\\
deux \ couples \ possibles:\\
x = -4 \ et \ y = -9\\
x = 9 \ et \ y=4[/tex]