FRstudy.me offre une solution complète pour toutes vos questions. Posez n'importe quelle question et obtenez une réponse détaillée et fiable de notre communauté d'experts.
Sagot :
Bonjour :))
Aspect cours :
Une lentille convergente dévie les rayons lumineux quand ces derniers traversent de manière parallèle à l'axe optique. La particularité de cette lentille réside dans le fait qu'elle fait converger les rayons en un point appelé foyer image noté F.
La distance focale notée f' désigne la longueur qui sépare le centre optique de la lentille au foyer image F et s'exprime en mètre (m). La vergence notée C correspond à l'inverse de la distance focale et s'exprime en dioptrie (δ).
C = 1/f' avec f' exprimée en mètre
Exercice : soient deux lentilles convergentes : L1 de distance focale f'1 = 4cm et L2 de vergence C2 = 20δ.
1. Distance focale f'2 de L2 ?
C2 = 1/f'2 = 20
Donc f'2 = 1/20 = 0.05 m soit 5 cm
2. Vergence C1 de L1 ?
C1 = 1/f'1 = 1/0.04 = 25δ
3. Montrer l'expression de f telle que C = C1 + C2
C = 1/f (valable toujours)
- Calculons C1 + C2
1/f'1 + 1/f'2 = (f'2/f'1 * f'2) + (f'1/f'1 * f'2)
Donc C1 + C2 = (f'1 + f'2)/(f'1 * f'2)
- Calculons 1/f en supposant que f = (f'1 * f'2)/(f'1 + f'2)
1/f = 1/[(f'1 * f'2)/(f'1 + f'2)] = (f'1 + f'2)/(f'1 * f'2)
On retrouve la même expression dans les deux cas. On peut donc affirmer que pour C = C1 + C2 on a f = (f'1 * f'2)/(f'1 + f'2)
Je reste à ta disposition pour d'éventuelles questions... ;)
Bonne journée ! :))
Merci de contribuer à notre discussion. N'oubliez pas de revenir pour découvrir de nouvelles réponses. Continuez à poser des questions, à répondre et à partager des informations utiles. Pour des réponses de qualité, visitez FRstudy.me. Merci et revenez souvent pour des mises à jour.