👤

FRstudy.me offre une plateforme conviviale pour trouver et partager des connaissances. Rejoignez notre communauté de connaisseurs pour trouver les réponses dont vous avez besoin sur n'importe quel sujet ou problème.

Bonjour à tous, j'ai un exercice à faire pour vendredi mais je suis carrément bloqué. Pouvez-vous m'aider ? Je vous en remercie d'avance! Vous trouverez ci-joint l'exercice.




Bonjour À Tous Jai Un Exercice À Faire Pour Vendredi Mais Je Suis Carrément Bloqué Pouvezvous Maider Je Vous En Remercie Davance Vous Trouverez Cijoint Lexercic class=

Sagot :

a) (x-(-2-√3))(x-(-2+√3))=x²-(-2+√3)x-(-2-√3)x+(-2-√3)(-2+√3)
(x-(-2-√3))(x-(-2+√3))=x²+4x-√3x+√3x+(-2)²-3=x²+4x+1
Donc f(x)=(x-(-2-√3))(x-(-2+√3))

b) f(x)=x²+4x+1=x²+4x+4-4+1=(x+2)²-3

c) f(x)=0
On utilise la forme factorisée :
(x-(-2-√3))(x-(-2+√3))=0
⇔ (x-(-2-√3))=0 ou (x-(-2+√3))=0
⇔x=-2-√3 ou x=-2+√3

f(x)=1
On utilise la forme développée :
x²+4x+1=1
⇔x²+4x=0
⇔x(x+4)=0
⇔x=0 ou x+4=0
⇔x=0 ou x=-4

f(x)=-3
On utilise la forme canonique :
(x+2)²-3=-3
⇔(x+2)²=0
⇔x+2=0
⇔x=-2

f(x)- (x-(-2-√3))=0
On utilise la forme factorisée
(x-(-2-√3))(x-(-2+√3))-(x-(-2-√3))=(x-(-2-√3))((x-(-2+√3))-1)
=(x-(-2-√3))(x-(-1+√3))
(x-(-2-√3))(x-(-1+√3))=0
⇔(x-(-2-√3))=0 ou (x-(-1+√3))=0
⇔x=-2-√3 ou x=-1+√3



Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Merci de visiter FRstudy.me. Nous sommes là pour vous aider avec des réponses claires et concises.