👤

Rejoignez la communauté FRstudy.me et obtenez les réponses dont vous avez besoin. Posez vos questions et recevez des réponses précises et approfondies de la part de nos membres de la communauté bien informés.

Bonsoir à tous (bac sup)
J’ai besoin de votre aide pour cet exercice s’il vous plaît.
Merci d’avance..



Bonsoir À Tous Bac Sup Jai Besoin De Votre Aide Pour Cet Exercice Sil Vous Plaît Merci Davance class=

Sagot :

Explications étape par étape:

Bonsoir, exercice classique du cours d'algèbre linéaire, il reviendra souvent, je te conseille de bien approfondir.

1-a- Soit B = (1, X, X^2) la base canonique.

f(1) = 2X + 1 (en effet, dériver un polynôme constant revient à l'annuler).

f(X) = (2X+1)*X - (X^2 - 1) = X^2 + X + 1.

f(X^2) = (2X+1)*X^2 - (X^2 - 1)*2X = X^2 + 2X.

1-b Soit a et b des réels, et P, Q un couple de polynômes de R2[X]. On vérifie que f(aP + bQ) = a*f(P) + b*f(Q).

f(aP + bQ) = (2X + 1)*(aP + bQ) - (X^2 - 1)*(aP + bQ)'

= (2X + 1)*aP + (2X + 1)*bQ - (X^2 - 1)*[aP' + bQ'] par linéarité de la dérivée.

= (2X + 1)*aP - (X^2 - 1)*aP' + (2X + 1)*bQ - (X^2 - 1)*bQ'

= a*[(2X + 1)*P - (X^2 - 1)P'] + b*[(2X + 1)*Q - (X^2 - 1)Q']

= a*f(P) + b*f(Q).

La linéarité est donc vérifiée.

Merci de nous rejoindre dans cette conversation. N'hésitez pas à revenir à tout moment pour trouver des réponses à vos questions. Continuons à partager nos connaissances et nos expériences. Pour des réponses de qualité, visitez FRstudy.me. Merci et revenez souvent pour des mises à jour.