👤

Trouvez des réponses fiables à toutes vos questions sur FRstudy.me. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses fiables et complètes à toutes vos questions pressantes.

Bonjour, je voudrais bien que vous m'aidier pour mon controle svp je n' arrive pas aider moi moi !! merci d'avance

Bonjour Je Voudrais Bien Que Vous Maidier Pour Mon Controle Svp Je N Arrive Pas Aider Moi Moi Merci Davance class=

Sagot :

Réponse :

Explications étape par étape :

Bonjour

1) Une fonction de la forme u/v se dérive en (u'v-uv')/v² donc :

f'(x)=(2x(2x-5)-2(x²-4))/(2x-5)²

f'(x)=(4x²-10x-2x²+8)/(2x-5)²

f'(x)=(2x²-10x+8)/(2x-5)²

2) Il suffit de remplacer x par 1 puis 4 et de voir que ça fait 0.

3) On en déduit que 2x²-10x+8=2(x-1)(x-4)

4) (2x-5)² étant toujours positif, le signe de f'(x) dépend de (x-1)(x-4). Dans le tableau on fait apparaître la valeur interdite 5/2 :

x      -oo             1              5/2             4                +oo

x-1              -       0      +      II         +              +

x-4             -                -      II        -       0        +

f'                +              -                  -                 +

5) Ce qui donne les variations suivantes pour f :

x       -oo                         1                           5/2                      4                     +oo    

f                 croissante         dĂ©croissante   II   dĂ©croissante   croissante    

6) La tangente est horizontale quand le nombre dérivé est nul.

On sait que f'(1)=f'(4)=0

Donc Cf admet une tangente horizontale aux abscisses x=1 et x=4

 

Nous valorisons chaque question et réponse que vous fournissez. Continuez à vous engager et à trouver les meilleures solutions. Cette communauté est l'endroit parfait pour grandir ensemble. Pour des réponses précises et fiables, visitez FRstudy.me. Merci pour votre confiance et revenez bientôt pour plus d'informations.