👤

Recevez des conseils d'experts et un soutien communautaire sur FRstudy.me. Posez vos questions et obtenez des réponses rapides et bien informées de la part de notre réseau de professionnels expérimentés.

Pouvez vous m’aider à partir du 2b) svp? je comprends pas

Pouvez Vous Maider À Partir Du 2b Svp Je Comprends Pas class=

Sagot :

Réponse :

Bonjour

Explications étape par étape :

2)

a)

g'(x)=2/x - 1/x²

g '(x)=(2x-1)/x²

Donc g '(x) est du signe de 2x-1.

2x-1 > 0 ==> x > 1/2

Variation :

x----->0.......................1/2....................+∞

g '(x)-->..........-............0............+.............

g(x)--->||.........D.........g(1/2)......C..........

g(1/2)=2ln(1/2)-1+2=2n(1/2)+1

g(1/2)=2[ln(1)-ln(2) ]+1

g(1/2)=1-2ln(2) ≈ -0.386

b)

Ce tableau prouve que g(x) passe par un minimum égal à 1-2ln2 pour x=1/2.

3)

Sur ]0;1/2] , g(x) tend vers +∞ quand x tend vers +∞ puis passe à une valeur négative pour x=1/2. Donc d'après le théorème des valeurs intermédiaires (TVI) il existe un unique réel α sur cet intervalle tel que g(α)=0.

Sur [1/2;+∞[ , g(x) passe d'une valeur négative à une limite égale à +∞ quand x tend vers +∞. Donc d'après le théorème des valeurs intermédiaires (TVI) il existe un unique réel β sur cet intervalle tel que g(β)=0.

4)

x--------->0....................α................β.....................+∞

g(x)------>...........+.........0........-.......0.........+.............

B)

5)

Donc :

f(x)=x²*ln(x)-x²+x

La fonction puissance impose sa limite par rapport à la fonction ln(x).

Quand x tend vers zéro :

On trouve une démonstration très longue avec changement de variable sur Internet en posant x=1/X.

sinon tu écris : la fonction puissance  de x impose sa limite par rapport à la fonction ln(x).

lim f(x)=0 -0+0=0

lim f(x) quand x tend vers +∞ :

f(x)=x²(ln(x)-1)+x

lim f(x)= (+∞)*(+∞)+∞=+∞

6)

f(α)=α²(ln(α)-1)+α

Mais g(α)=0 , ce qui donne :

2*ln(α)-1+1/α=0 soit :

2*ln(α)=1 - 1/α

ln(α)=1/2 -1/(2α) que l'on reporte dans f(α) :

f(α)=α²(1/2 - 1/(2α) - 1 ) +α

f(α)=α²/2 - α/2 -α² + α

f(α)=α²/2 - α/2 -2α²/2 + 2α/2

f(α)=α/2 - a²/2

f(α)=(α/2)(1-α)

7)

x²(lnx-1)  est de la forme u*v avec :

u=x² donc u'=2x

v=ln(x)-1 donc v'=1/x

u'v+uv'=2x(ln(x)-1) + x²/x=2x*ln(x)-2x+x=2x*ln(x)-x

Donc :

f '(x)=2x*ln(x)-x+1

Mais g(x)=2*ln(x)-1+1/x qui donne :

x*g(x)=x(2*ln(x)-1+1/x)

x*g(x)=2x*ln(x)-x+1

Donc :

f '(x)=x*g(x)

8)

On peut continuer et faire le tableau de variation de f(x) .

Sur ]0;+∞[ f '(x) est donc du signe de g(x) vu à la question 4).

x-------->0...................α................β..................+∞

f '(x)---->...........+........0.........-.......0..........+............

f (x)----->..........C........f(α)....D......f(β)......C........

C=flèche qui monte et D=flèche qui descend.

Voir graphiques non demandés .

Cg en noir et Cf en rouge.

View image Bernie76
Votre participation est très importante pour nous. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Pour des réponses de qualité, choisissez FRstudy.me. Merci et à bientôt sur notre site.