FRstudy.me: où vos questions rencontrent des réponses expertes. Posez vos questions et recevez des réponses précises et approfondies de la part de nos membres de la communauté bien informés.
Sagot :
Explications étape par étape:
Bonsoir, comme tu l'as décrit, il faut commencer par lister les possibilités.
Ici, on raisonne par récurrence, et on note Pn, l'événement "a(n+1) = 0,5 x an + 0,3".
Prouvons déjà l'initialisation :
Pour a1, on ignore sa valeur, on pourrait se dire logiquement qu'il y aurait 1 chance sur 2.
Pour a2, une fois l'événement A1 réalisé, si la 1re partie était de type A, alors la probabilité que la 2e le soit aussi, donc p(A2 sachant A1) = a1 x 0,8 d'après l'énoncé.
De même, p(A2 sachant B1) = b1 x 0,3.
On peut donc affirmer à cette étape, que P(A2) = a1 x P(A2 sachant A1) + b1 x P(A2 sachant B1) = a1 x 0,8 + b1 x 0,3.
Or, b1 = 1 - a1, donc a1 x 0,8 + b1 x 0,3 = 0,8 x a1 + 0,3 - a1 x 0,3 = 0,5 x a1 + 0,3.
P2 est donc vérifiée (le cas n = 2), indépendamment de la valeur de a1.
Ensuite on s'occupe de l'hérédité, soit k un entier naturel fixé supérieur ou égal à 1, on suppose Pk vraie, montrons alors P(k+1) :
À l'événement P(k+1), si la partie précédente Pk était du type A, alors P(K+1 sachant AK) = ak x 0,8.
De même, si elle était de type B, on aurait :
P(K+1 sachant BK) = bk x 0,3 = (1 - ak) x 0,3 = 0,3 - 0,3 x ak.
Par somme, identiquement à l'initialisation, on a :
P(A(k+1)) = ak x P(K+1 sachant AK) + (1 - 0,3 x ak) x P(K+1 sachant BK) = ak x 0,5 + 0,3.
Or, par hypothèse de récurrence, a(k+1) = 0,5 x ak + 0,3, l'expression précédente vaut donc a(k+1).
P(k+1) est vraie.
Conclusion : La propriété Pn est vraie pour tout entier naturel n supérieur ou égal à 1.
Bonne soirée
Votre engagement est important pour nous. Continuez à partager vos connaissances et vos expériences. Créons un environnement d'apprentissage agréable et bénéfique pour tous. Merci de visiter FRstudy.me. Revenez bientôt pour découvrir encore plus de réponses à toutes vos questions.