👤

FRstudy.me offre une solution complète pour toutes vos questions. Posez n'importe quelle question et recevez des réponses détaillées et précises de la part de notre communauté d'experts.

Soit le plan muni d'un repère orthonormal (O,I,J).

On considère les points

C(−2; 5/2 ) ,
E(0;− 5 2 ) ,
R( 5/2 ;− 3 /2 )
T( 1/2 ; 7/2 ) .

1. Démontrer que le quadrilatère TCER est un parallélogramme.
2. Démontrer que le quadrilatère TCER est un rectangle.

Svp c'est notée, Merci beaucoup​


Sagot :

Réponse :

Explications étape par étape :

Bonjour,

1) TCER parallélogramme si TC ║ ER et TR ║ CE

TC = (1/2+2,7/2-5/2) = (2.5, 1) et ER = (5/2-0,-3/2+5/2) = (2.5,1)

Donc TC est colinéaire a ER donc TC ║ ER

TR = (5/2-1/2,-3/2-7/2) = (2,-5) et CE = (0+2,-5/2-5/2) = (2,-5)

donc TR est colinéaire à CE donc TR ║ CE

donc TCER est un parallélogramme

2) TCER est rectangle ? si Longueur ≠ largeur

montrer qu'il y a un angle droit : en vecteur TR . TC = 2x2.5  -5x 1 = 0

Donc produit scalaire nul donc TR ⊥ TC

longueur de TR = √{(5/2-1/2)² + (-3/2-7/2)²} = √{(2)²+(5)²} = √29

longueur de TC = √{(2.5)²+(1)²} = √7.25

donc TCER est rectangle avec L = √29 et l = √7.25