👤

Recevez des conseils d'experts et un soutien communautaire sur FRstudy.me. Posez vos questions et recevez des réponses rapides et bien informées de la part de notre réseau de professionnels expérimentés.

bonjour est ce que quelqu'un pourrait m'aider pour cet exercice SVP​

Bonjour Est Ce Que Quelquun Pourrait Maider Pour Cet Exercice SVP class=

Sagot :

Réponse :

soit  x ∈ R

on pose  A = √(x²+1) - |x|   et   B = √(x²+1) + |x|

1) Montrer que :  A > 0  et en déduire que :   B > 2|x|

A = √(x²+1) - |x|   ⇔  A = [(√(x²+1) - |x|)(√(x²+1) + |x|)]/(√(x²+1) + |x|)

                                    = [(x² + 1) - |x|*|x|]/(√(x²+1) + |x|)  

or  |x|*|x| = |x*x| = |x²| = x²  car un carré est positif

donc  A = (x² + 1 - x²)/(√(x²+1) + |x|)  ⇔ A = 1/(√(x²+1) + |x|)  

or  (√(x²+1) + |x|)  > 0  et  1 > 0  donc  A = 1/(√(x²+1) + |x|) > 0

donc  A > 0

en déduire que B > 2|x|

A > 0  ⇔  √(x²+1) - |x| > 0  ⇔ √(x²+1) > |x|   ⇔ √(x²+1) + |x| > |x| + |x|  car |x| >0

⇔  √(x²+1) + |x| > 2|x|   ⇔ B > 2|x|

2) calculer AB

     AB = (√(x²+1) - |x|)*( √(x²+1) + |x|) = x² + 1 - x² = 1  ⇒ AB = 1

en déduire que A < 1/2|x|  pour  x ≠ 0

    AB = 1  ⇔ A = 1/B   et   sachant que  B > 2|x|   ⇔ 1/B < 1/2|x|

donc  A < 1/2|x|

3) démontrer que pour tout x ≠ 0

     |x| < √(x²+1) < |x| + 1/2|x|

    A < 1/2|x|  ⇔ √(x² + 1) - |x| < 1/2|x|  ⇔  √(x² + 1) - |x| + |x| < |x| + 1/2|x|    

⇔   √(x² + 1) < |x| + 1/2|x|  

   B > 2|x|  ⇔   √(x² + 1) + |x| > 2|x|  ⇔ √(x² + 1) + |x| - |x| > 2|x| - |x|

⇔ √(x² + 1) > |x|

donc   on a bien   |x| < √(x²+1) < |x| + 1/2|x|

Explications étape par étape :