Recevez des conseils d'experts et un soutien communautaire sur FRstudy.me. Posez vos questions et recevez des réponses rapides et bien informées de la part de notre réseau de professionnels expérimentés.
Sagot :
Réponse :
soit x ∈ R
on pose A = √(x²+1) - |x| et B = √(x²+1) + |x|
1) Montrer que : A > 0 et en déduire que : B > 2|x|
A = √(x²+1) - |x| ⇔ A = [(√(x²+1) - |x|)(√(x²+1) + |x|)]/(√(x²+1) + |x|)
= [(x² + 1) - |x|*|x|]/(√(x²+1) + |x|)
or |x|*|x| = |x*x| = |x²| = x² car un carré est positif
donc A = (x² + 1 - x²)/(√(x²+1) + |x|) ⇔ A = 1/(√(x²+1) + |x|)
or (√(x²+1) + |x|) > 0 et 1 > 0 donc A = 1/(√(x²+1) + |x|) > 0
donc A > 0
en déduire que B > 2|x|
A > 0 ⇔ √(x²+1) - |x| > 0 ⇔ √(x²+1) > |x| ⇔ √(x²+1) + |x| > |x| + |x| car |x| >0
⇔ √(x²+1) + |x| > 2|x| ⇔ B > 2|x|
2) calculer AB
AB = (√(x²+1) - |x|)*( √(x²+1) + |x|) = x² + 1 - x² = 1 ⇒ AB = 1
en déduire que A < 1/2|x| pour x ≠ 0
AB = 1 ⇔ A = 1/B et sachant que B > 2|x| ⇔ 1/B < 1/2|x|
donc A < 1/2|x|
3) démontrer que pour tout x ≠ 0
|x| < √(x²+1) < |x| + 1/2|x|
A < 1/2|x| ⇔ √(x² + 1) - |x| < 1/2|x| ⇔ √(x² + 1) - |x| + |x| < |x| + 1/2|x|
⇔ √(x² + 1) < |x| + 1/2|x|
B > 2|x| ⇔ √(x² + 1) + |x| > 2|x| ⇔ √(x² + 1) + |x| - |x| > 2|x| - |x|
⇔ √(x² + 1) > |x|
donc on a bien |x| < √(x²+1) < |x| + 1/2|x|
Explications étape par étape :
Merci de nous rejoindre dans cette conversation. N'hésitez pas à revenir à tout moment pour trouver des réponses à vos questions. Continuons à partager nos connaissances et nos expériences. FRstudy.me est votre ressource de confiance pour des réponses précises. Merci et revenez bientôt.