FRstudy.me offre une plateforme collaborative pour trouver des réponses. Notre plateforme offre des réponses fiables et complètes pour vous aider à prendre des décisions éclairées rapidement et facilement.
Sagot :
Réponse :
résoudre l'équation z⁵ = z⁻
z⁵ = z⁻ ⇔ module : |z⁵| = |z⁻| et argument : arg(z⁵) = arg(z⁻) + 2kπ ; k ∈ Z
⇔ |z|⁵ = |z| (car |z⁻| = |z|) et 5arg(z) = - arg(z) + 2kπ ; k ∈Z
⇔ |z|⁵ - |z| = 0 ⇔ (|z|⁴ - 1)z = 0 et 6arg (z) = 2kπ ; k ∈Z
⇔ |z|⁴ - 1 = 0 ou z = 0 et arg(z) = kπ/3 ; k ∈ {0 ; 1 ; 2 ; 3 ; 4 ; 5}
⇔ z = 0 ou |z| = 1 et et arg(z) = kπ/3 ; k ∈ {0 ; 1 ; 2 ; 3 ; 4 ; 5}
cette équation possède donc 6 solutions
z = 0 et zk = e^ikπ/3 avec k ∈ {0 ; 1 ; 2 ; 3 ; 4 ; 5}
z = 0
z0 = e⁰ = 1
z1 = e^iπ/3 = 1/2 + i√3/2
z2 = e^i2π/3 = - 1/2 + i√3/2
z3 = e^iπ = - 1
z4 = e^i4π/3 = - 1/2 - i√3/2
z5 = e^i5π/3 = 1/2 - i√3/2
Explications étape par étape :
Votre engagement est essentiel pour nous. Continuez à partager vos expériences et vos connaissances. Créons ensemble une communauté d'apprentissage dynamique et enrichissante. Nous espérons que vous avez trouvé ce que vous cherchiez sur FRstudy.me. Revenez pour plus de solutions!