👤

FRstudy.me offre une plateforme collaborative pour trouver des réponses. Trouvez des réponses détaillées et fiables de la part de notre réseau de professionnels expérimentés.

Bonjour, je bloque sur la récurrence, et j’espère que vous pourrez m’aider.

On considère la suite (un) défini pour tout entier naturel par un+1= un+2n+3 et u0= 1
Démonter par récurrence que un=(n+1)^2

Merci.


Sagot :

Tenurf

Bonjour,

Nous allons démontrer par récurrence que la proposition suivante est vraie

pour tout n entier, [tex]u_n=(n+1)^2[/tex]

Etape 1 - Initialisation

pour n = 0 [tex]u_0=1[/tex]

et [tex](0+1)^2=1^2=1[/tex]

Donc c'est vrai au rang 0

Etape 2 - Supposons que cela soit vrai au rang p et démontrons alors que cela reste vrai au rang p+1

Hypothese de Récurrence est [tex]u_p=(p+1)^2[/tex]

et nous devons montrer que [tex]u_{p+1}=((p+1)+1)^2=(p+2)^2[/tex]

Nous savons que

[tex]u_{p+1}=u_p+2p+3[/tex]

Utilisons l'hypothèse de récurrence [tex]u_p=(p+1)^2[/tex]

cela donne

[tex]u_{p+1}=(p+1)^2+2p+3[/tex]

Développons

[tex]u_{p+1}=(p+1)^2+2p+3=p^2+2p+1+2p+3=p^2+4p+4=(p+2)^2[/tex]

donc cela reste vrai au rang p+1

Etape 3 - conclusion

Nous venons donc de démontrer par récurrence que la proposition suivante est vraie

pour tout n entier, [tex]u_n=(n+1)^2[/tex]

Merci

Réponse :

Explications étape par étape :

■ Un+1 = Un + 2n+3 avec Uo = 1

■ U1 = 4 ; U2 = 9 ; U3 = 16 ; ...

 

■ ■ démo par récurrence :

Un+1 = Un + 2n+3 or on souhaite Un = (n+1)²

donc Un+1 = (n+1)² + 2n+3

                  = n²+2n+1 + 2n+3

                  = n² + 4n + 4 .

or on a aussi Un+1 = (n+1 + 1)² = (n+2)² = n² + 4n + 4 .

■ ■ ■ conclusion :

on a bien Un = (n+1)² .