👤

Explorez une vaste gamme de sujets et obtenez des réponses sur FRstudy.me. Posez vos questions et recevez des réponses détaillées et fiables de la part de nos membres de la communauté expérimentés et bien informés.

Bonjour, j'aimerai de l'aide pour cet exercice:

Écrire sans radical au dénominateur.

A=
[tex] \frac{5}{ \sqrt{3} } [/tex]
B=
[tex] \frac{6}{ \sqrt{2} } [/tex]
C=
[tex] \frac{4}{3 - \sqrt{2} } [/tex]
D=
[tex] \frac{7}{4 + \sqrt{3} } [/tex]
E=
[tex] \frac{6}{ \sqrt{3 } + \sqrt{2} } [/tex]
F=
[tex] \frac{ - 1}{ \sqrt{5} - \sqrt{3} } [/tex]


Sagot :

bjr

   observer :

     •  √3 x √3 = 3     (définition de √)

     •  (3 - √2)(3 + √2) = 3² - (√2)²        ( (a - b)(a + b) = a² - b²

                                  =  9 - 2

                                  = 7

dans les 2 cas le produit ne contient plus de radical

                                      - - - - - - - - - - - - - - -

A = 5/√3                  (on multiplie les deux termes du quotient par √3)

A = 5√3 /√3 x√3 = 5√3 / 3

B = 6/√2                  ( on multiplie les deux termes du quotient par √2)

B = 6 √2 / √2 x √2 = 6√2 / 2              (on simplifie par 2)

                                = 3 √2

C = 4 / (3 - √2)      ( on multiplie les deux termes du quotient par (3 + √2) )

C = 4 (3 + √2) / (3 - √2)(3 + √2)

C = 4 ( 3 + √2) / (3² - (√2)²

C = 4(3 + √2) / (9 - 2)

C = (12 + 4√2) / 7

c'est la même méthode pour tous

on multiplie les deux termes du quotient par la quantité conjuguée

du dénominateur. (si on a une différence on multiplie par une somme et inversement)

D  la quantité conjuguée de  4 + √3  est  4 - √3

E                    "                        √3 + √2  est √3 - √2

F                     "                        √5 - √3  est √5 + √3